

Standard Model @ Hadron Colliders I Basics & QCD P.Mättig Bergische Universität Wuppertal

Pillars of the Standard Model

Standard model: Comprehensive and precisly tested

BERGISCHE UNIVERSITÄT WUPPERTAL

LHC Standard model 'on the shoulder of giants'

40 years of experimental scrutiny LEP, SLC, HERA, Tevatron, PETRA, PEP, SppS,

Answers to questions of a century ago!

Standard model pillar I: Matter

BERGISCHE

UNIVERSITAT WUPPFRTAL

Twelve kinds of spin ½ fermions to build the world

LHC's role:

Heaviest Standard Model particle - Top Quark: unique at hadron colliders

Neutrinos not really testable @ hadron colliders Most quarks/all charged leptons very deeply scrutinized

Standard Model pillar II: Forces

Three interactions to hold world together

realised by three Spin 1 bosons Dynamics known to a precision of 10⁻⁵ – 10⁻⁸

LHC's mission:

- probe rare processes
- probe dynamics at unprecedented energies

Standard Model Pillar III: Higgs

Spin 0 particle to prevent theory from exploding

Massive Bosons and Fermions
→ Basic principles of SM violated
→ Cross section violates unitarity

SM: new elementary boson

LHC's mission: find it !!!!!!!

MISSION ACCOMPLISHED!!!!! (????)

LHC's quest: ,New Physics'

LHC entering unchartered territory

Understanding SM precondition to establish ,New Physics'

- Standard Model processes background
- > Tools
- Standard Model to the extreme

Our dream for the next years

Today's Santa Maria: LHC

Proton – Proton Kollisionen @ 14 TeV c.m. energy (up to now 8 TeV)

4 Experiments

Will focus on results from ATLAS and CMS

(LHCb

talk of Tim Gershon)

How protons interact

Proton interactions: complex events

Some 1000 particles!

Experimenters task: find the basic structures

Reveals picture of space time of 10⁻¹⁹ m

hard scatter: two in \rightarrow two out e.g. gluon-gluon \rightarrow top-antitop

Add-on 1: Parton distribution function

Partons only take fraction of proton momentum pdfs: probability for parton to assume fraction of proton momenta

BERGISCHE UNIVERSITÄT WUPPERTAL

I.e. high masses requires $M_{scatter} = \sqrt{x_1 \cdot x_2} \cdot E_{pp}$ large x - values ,resolution power' for LHC: 8 TeV 1010 109 10^{8} 107 10^{6} High masses 105 dL/dŝ [pb] Low masses: mostly 10^{4} mostly 10^{3} quark - quark gluon – gluon 10^{2} scattering 101 scattering 100 10^{-1} 10^{-2} 10^{-3} 0.05 0.10 0.50 1.00 5.00 10.00 0.01 Sqrt(ŝ) [TeV]

Peter Mättig, CERN Summer Students 2013

Add on 2: Interaction disturbed by gluons

calculable (although in most cases not completely)

BERGISCHE

UNIVERSITAT WUPPFRTAL

(N)NLO calculation,

i.e. full matrix element with up to two additional partons $O(\alpha_s^3)$

Beyond this: iterative parton splitting (Markov chain) no interferences considered

partons turn to hadrons

Quarks and Gluons turn into pions, kaons, protons:

hadronisation

No fundamental description

→ model with many parameters

Colour flow of proton remnants

Remainung quarks and gluons interact

,Underlying event'

 $\int_0^1 d\mathbf{x_1} \int_0^1 d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1P}) + \mathbf{q_2}(\mathbf{x_2P}) \rightarrow \mathbf{X} + \mathbf{Y_{underlying}})$

Requires multidimensional integration → Monte Carlo simulation Several QCD generators: PYTHIA, HERWIG, SHERPA,

BERGISCHE

Homogeneously distributed low momentum hadrons: 'underlying event'

Affect measurements of objects!

Many tt – events: extract physics

Standard Model tests

underlying event	parton distribution function	$\sigma(p_f(xP) + p_{f'}(x'P) \to X)$
measure	from previous measurement	from theoretical calculation
from models	measure	from theoretical calulation
from models	from previous measurement	measure

Three items only mildly related but lead to uncertainties

Rapidity

Parton collisions not in rest system > rapidity accounts for boost

$$\frac{d\sigma}{dy} = \text{const}$$
Typical for radiative multi-particles
$$y = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right) = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{\sqrt{m^2 + p_T^2}} \right)$$

$$y \implies y' = y + \frac{1}{2} \ln \left(\frac{1 + \beta}{1 - \beta} \right)$$
Difference of rapidities Lorentz invariant

oidities Lorentz invariant

 $\Delta \mathbf{K} = \sqrt{(\mathbf{y}_{\mathbf{A}} - \mathbf{y}_{\mathbf{B}})^2 + (\phi_{\mathbf{A}} - \phi_{\mathbf{B}})^2}$ Separation is Lorentz invariant

For $m \rightarrow 0$: $y \rightarrow \eta$, pseudo – rapidity' $\eta = \frac{1}{2} \ln (\tan \theta / 2)$ Simpler to measure, but $\Delta \eta$ not Lorentz invariant

Soft interactions

No ,direct' parton – parton hit

Small overlap: no hard parton interactions Cannot be calculated from 1st principles

Partons scatter under small angle
 → low Q²

low Q² → large 'strong coupling' α_s Calculation not feasible build a 'reasonable' model

Introduces ,free' parameters to be determined from data Soft processes provide constraints in special conditions

Extrapolate to all topologies (and hope it will work)

Challenging! Only an approximate description possible!

Separating underlying events

Hard interactions + soft contributions

Transverse regions little affected by hard process properties like underlying event

Particles in underlying events

Can be reasonably described by models

BERGISCHE

Model parameters have to be adjusted Note: per LHC bunch crossing ~ currently 30 of these events

Parton distribution functions

Parton distribution functions

Energy fractions of different kinds of partons f in proton

 $\sigma(\mathbf{p_1}(\mathbf{P_1}) + \mathbf{p_2}(\mathbf{P_2}) \to \mathbf{Y} + \mathbf{X} + \text{Rest})$ $= \int_0^{\mathbf{1}} d\mathbf{x_1} \int_0^{\mathbf{1}} d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1}\mathbf{P}) + \mathbf{q_2}(\mathbf{x_2}\mathbf{P}) \rightarrow \mathbf{Y} + \mathbf{X} + \operatorname{Rest})$ xf(x,Q2) ... HEPDATA Databases GeV**2 Various measurements CTFQ6.1M CTEO6 1M 1.6 CTEO6.1M at M²₁ Gluons CTEO6.1M × 0. 1.4 theoretical evolution to 1.2 $(M^2)_2$ **Up quarks** 0.8 0.6 Just one of several 0.4 **Down quarks** pdf parametrisations 0.2 0 10-3 10-2 10^{-1}

LHC processes sensitive to pdfs:
Specific processes will allow to disentangle contributions
→ some self – calibration of pdfs

Hard interaction: Jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Jets are universal e⁺ e⁻ collisions ⊕ > , tre of screen is (0.0000.

BERGISCHE UNIVERSITÄT WUPPERTAL

e p collisions

Jets: bundles of hadrons

representative of quarks and gluons

→ direction, energy + (sometimes) parton flavour measurable

→ direct QCD tests possible

→ Experimental challenge: extract jets from 1000 particles

Jets are even more universal

BERGISCHE UNIVERSITÄT WUPPERTAL

How to find a jet ?

BERGISCHE UNIVERSITÄT WUPPFRTAL

jet 2

Jet

jet 1

hadron level Jet Defⁿ jet 1 jet 2

Unambiguous connection to underlying partons 🗲 **Comparison to theory**

Anyway how many jets? 'broadness' of jets arbitrary → jet multiplicity depends on choice → defined according to physics

Predefine how broad a jet should be!

Sequential jet finder

,Reverse evolution of event'

- **1** Select one particle (e.g. most energetic)
- 2 Find ,most similar' particle, (e.g. smallest angle, p_t)
- 3 Is combination smaller than predefined ,cut off' value (e.g. maximum angle, maximum mass)
 IF YES:
- 4 Combine to a new ,pseudo particle' (e.g. sum 4 momenta)
- 5 Go to 2

IF NO:
4 Jet found: sum of all associated particles
→ Start next 'jet'

$$\mathbf{d_{ij}} = \min(\mathbf{p_{ti}^{-2}}, \mathbf{p_{tj}^{-2}}) \frac{\Delta \mathbf{R_{ij}^{-1}}}{\mathbf{R^2}}$$
$$\Delta \mathbf{R_{ij}^2} = (\mathbf{y_i} - \mathbf{y_j})^2 + (\phi_i - \phi_j)^2$$

© Gavin Salam

Select hard particles as ,seeds' for jets: favoured by min(p_t²)

Hard particles separated in space are disctinct seeds: large ΔR_{ij}

,cut off' given by d_{ij} (steered by R)

Standard jet finding at LHC: ,Anti – kt'

The final jets

All particles assigned to jets

Close to circular in space good for experimental corrections

Note: special treatment of particles close to beam

Typical $\Delta R \approx 0.4 - 0.6$

The key test: jet cross section

Calculated to Next-to-leading order (NLO)

The experimental challenge I

BERGISCHE UNIVERSITÄT WUPPERTAL

p_τ^γ [GeV]

Energy scale uncertainty magnified by steep slope Jet energy determined from calorimeter (+ tracking information) Sophisticated calibration procedure

BERGISCHE

Peter Mättig, CERN Summer Students 2013

Uncertainties: summary

BERGISCHE UNIVERSITÄT WUPPERTAL

Experimental uncertainties dominate at low p_T

pdf/theoretical uncertainties dominate at high p_T

Note: loss of control of uncertainties for $p_T < 20$ GeV

Jet cross sections in rapidity and pT

Excellent agreement theory <-> data

over huge range in phase space

Peter Mättig, CERN Summer Students 2013

BERGISCHE UNIVERSITÄT WUPPERTAL

Excellent agreement theory <-> data

Probing masses up to 5 TeV!

QCD effects: number of jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Even though not exact matrix element: Good agreement on jet multiplicity

Determining the strong coupling $\alpha_{\rm s}$

BERGISCHE UNIVERSITÄT WUPPERTAL

 $\alpha_{\mathbf{s}}^{\mathbf{world}} = 0.1184 \pm 0.0007$ $\alpha_{\mathbf{s}}^{\mathbf{LHC}} = 0.1160^{+0.0072}_{-0.0031}$

Single value less precise, but huge energy range Energy dependence of α_s clearly visible

Measuring jet evolution

our view of jet evolution:

- Sequential radiation of gluons
- Leading to finer granularities

Mimicked in models – how good are these models?

Measure, at which d_{ij} jet is split into two, three, I.e. reverse jet finding

Into 2 jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Very good agreement at least for some models

High p_T Jets

BERGISCHE UNIVERSITÄT WUPPERTAL

High p_T jets: important to explore TeV scale physics May be due to boosted objects \rightarrow substructure Important: does QCD describe the structure of boosted jets?

Measure mass of high p_T jet:

Globally: agreement with expectation But details differ!

Are partons composite?

BERGISCHE UNIVERSITÄT WUPPERTAL

Rutherford all over again

Jets and BSM: Search for di – jet resonances

BERGISCHE UNIVERSITÄT WUPPERTAL

Are quarks composite ?

BERGISCHE UNIVERSITÄT WUPPERTAL

Compositeness → modify angular distribution

continous change with higher jet – jet mass

No deviation from SM observed: Λ > 7.8 TeV

Note: results applicable to other exotic models: black – holes, colour octet quarks,

Strong interactions at core of pp –interactions

- Multihadron events (soft interactions) measured
- Jet cross sections agree with predictions over a wide range
- Probing Multi TeV range: no sign for physics Beyond Standard Model