Probability for Neutrino Oscillation in Vacuum

$$
\begin{gathered}
(\hbar=\mathrm{c}=1) \\
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\operatorname{Amp}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)\right|^{2}= \\
=\delta_{\alpha \beta}-4 \sum_{i>j} \Re\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right) \\
+2 \sum_{i>j} \Im\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin \left(\Delta m_{i j}^{2} \frac{L}{2 E}\right) \\
\text { where } \Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}
\end{gathered}
$$

For Antineutrinos -

We assume the world is CPT invariant.
C: Replaces particle by antiparticle P: Reverses helicity
T : Reverses the arrow of time

$$
P\left(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}}\right) \stackrel{C P T}{=} P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right)=P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; U \rightarrow U^{*}\right)
$$

Thus,

$$
\begin{aligned}
& P\left(\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-)}{\nu_{\beta}}\right)= \\
& =\delta_{\alpha \beta}-4 \sum_{i>j} \Re\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right) \\
& \quad \nleftarrow 2 \sum_{i>j} \Im\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin \left(\Delta m_{i j}^{2} \frac{L}{2 E}\right)
\end{aligned}
$$

A complex U would lead to the CP violation $P\left(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}}\right) \neq P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)$.

— Comments —

1. If all $\mathrm{m}_{\mathrm{i}}=0$, so that all $\Delta \mathrm{m}_{\mathrm{ij}}^{2}=0$,

$$
\mathrm{P}\left(\stackrel{(-)}{\nu_{\alpha}} \rightarrow{\left.\stackrel{(-)}{\nu_{\beta}}\right)}^{\prime}=\delta_{\alpha \beta}\right.
$$

Flavor change $\Rightarrow v$ Mass

2. If there is no mixing,

Flavor change \Rightarrow Mixing

3. One can detect $\left(v_{\alpha} \rightarrow v_{\beta}\right)$ in two ways:

See $v_{\beta \neq \alpha}$ in a v_{α} beam (Appearance)
See some of known v_{α} flux disappear (Disappearance)
4. Including \hbar and c

$$
\Delta m^{2} \frac{L}{4 E}=1.27 \Delta m^{2}\left(\mathrm{eV}^{2}\right) \frac{L(\mathrm{~km})}{E(\mathrm{GeV})}
$$

$\sin ^{2}\left[1.27 \Delta m^{2}(\mathrm{eV})^{2} \frac{L(\mathrm{~km})}{E(\mathrm{GeV})}\right]$ becomes appreciable when its argument reaches $\mathcal{O}(1)$.

An experiment with given L / E is sensitive to

$$
\Delta m^{2}\left(\mathrm{eV}^{2}\right) \gtrsim \frac{E(\mathrm{GeV})}{L(\mathrm{~km})}
$$

5. Flavor change in vacuum oscillates with L/E. Hence the name "neutrino oscillation". \{The L / E is from the proper time τ.\}
6. P $\left({\stackrel{(}{v_{\alpha}}}_{\alpha} \rightarrow{\stackrel{(-}{v_{\beta}}}_{\beta}\right)$ depends only on squared-mass splittings. Oscillation experiments cannot tell us

7. Neutrino flavor change does not change the total flux in a beam.

It just redistributes it among the flavors.

$$
\sum_{\text {All } \beta} P(\stackrel{\left(\stackrel{\nu}{\alpha}_{\alpha}\right.}{\overbrace{\beta}})=1
$$

But some of the flavors $\beta \neq \alpha$ could be "sterile".
Then some of the active flux disappears:

$$
\phi_{\nu_{e}}+\phi_{\nu_{\mu}}+\phi_{\nu_{\tau}}<\phi_{\text {Original }}
$$

When the Spectrum Is-

For $\beta \neq \alpha$,
$P\left(\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-}{\nu}_{\beta}\right) \cong 4\left|U_{\alpha 3} U_{\beta 3}\right|^{2} \sin ^{2}\left(\Delta m^{2} \frac{L}{4 E}\right)$.
For no flavor change,
$P\left(\stackrel{(-)}{\nu}_{\alpha} \rightarrow{\left.\stackrel{(-)}{\nu_{\alpha}}\right) \cong 1-4\left|U_{\alpha 3}\right|^{2}\left(1-\left|U_{\alpha 3}\right|^{2}\right) \sin ^{2}\left(\Delta m^{2} \frac{L}{4 E}\right) . ~ . ~ . ~ . ~}_{\text {. }}\right.$.
Experiments with $\Delta m^{2} \frac{L}{E}=\mathcal{O}(1)$ can determine the flavor content of v_{3}.

When There are Only Two Flavors and Two Mass Eigenstates

For $\beta \neq \alpha$,

$$
P\left(\stackrel{(-)}{\nu_{\alpha}} \leftrightarrow \stackrel{(-)}{\nu_{\beta}}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\Delta m^{2} \frac{L}{4 E}\right) .
$$

For no flavor change, $P\left(\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-)}{\nu_{\alpha}}\right)=1-\sin ^{2} 2 \theta \sin ^{2}\left(\Delta m^{2} \frac{L}{4 E}\right)$.

