Holographic massive gravity

David Vegh

CERN Theory Group Retreat - Nov 7th, 2013

- ▶ take a quantum field theory
- > add charged matter density
- turn on temperature

Question: What is the conductivity?

- ▶ take a quantum field theory
- add charged matter density
- turn on temperature

Question: What is the conductivity?

Answer:
$$\partial_{\mu} T^{\mu\nu} = 0 \implies \lim_{\omega \to 0} \sigma(\omega) \sim \frac{\mu}{i\omega} + \delta(\omega)$$

Resolving $\sigma_{DC} = \infty$

$$\sigma(\omega) \sim \frac{\mu}{i\omega} + \delta(\omega)$$

So far generic QFTs . . .

... now turn to holographic theories!

Study QFTs with holographic duals

Relativistic CFT_3 with gravity dual + conserved U(1) global symmetry

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(\mathcal{R} + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \ldots \right)$$

Charged black hole solution

Break translational symmetry

• We know: bulk diffeomorphisms $\Rightarrow \partial_{\mu} T^{\mu\nu} = 0 \Rightarrow \sigma_{DC} = \infty$

Idea: $\partial_{\mu}T^{\mu\nu} \neq 0 \Rightarrow$ no bulk diff's \Rightarrow massive gravity

• We know: bulk diffeomorphisms $\Rightarrow \partial_{\mu} T^{\mu\nu} = 0 \Rightarrow \sigma_{DC} = \infty$

Idea:
$$\partial_{\mu}T^{\mu\nu} \neq 0 \Rightarrow$$
 no bulk diff's \Rightarrow massive gravity

▶ [de Rham-Gabadadze-Tolley] (and many others)

$$S \; = \; \tfrac{-1}{2\kappa^2} \int d^4x \, \sqrt{-g} \left[\mathcal{R} + \Lambda - \tfrac{L^2}{4} F^2 + m^2 \big(c_1 \mathcal{U}_1 + c_2 \mathcal{U}_2 + c_3 \mathcal{U}_3 + c_4 \mathcal{U}_4 \big) \right]$$

▶ the construction eliminates the Boulware-Deser ghost

Conductivity with graviton mass

ightharpoonup perturb a_x , g_{tx} and g_{rx}

Result:
$$\sigma_{DC} = 1 + \frac{\mu^2}{M^2(r_h)}$$