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Heavy-ion collisions well described by relativistic hydrodynamics:

@ Hydro is an effective theory: expansion around local thermal eq.

T = Tﬁ,‘} + small corrections

What are properties of (generic) quantum fields in equilibrium?
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Heavy-ion collisions well described by relativistic hydrodynamics:
@ Hydro is an effective theory: expansion around local thermal eq.

T = Tﬁ,‘} + small corrections

What are properties of (generic) quantum fields in equilibrium?

@ ...but initial state far from thermal equlibrium

How do (generic) quantum fields relax towards equilibrium?

@ Applications elsewhere: cosmological relics, reheating, cold atomic
gases, neutron stars. . .



Far-from-equilibrium dynamics

For generic theories, only weak coupling methods available:

@ Mostly parametric estimates, not even LO results

@ Even at weak coupling often non-perturbative: strong fields, secular
divergences, instabilities. ..

@ Weak coupling provides scale separations
o Case-by-case effective theories

Effective kinetic theory

o Classical field theory

o Hard loop effective theory/ Vlasov equations
o



Far-from-equilibrium dynamics
Simple example: what happens if you have too many soft gluons
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Far-from-equilibrium dynamics
Simple example: what happens if you have too many soft gluons

Initial condition

Self-similar cascade
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e Strong fields (f > 1): Classical (lat.) field theory
@ But not too (f <« 1/a): Effective kinetic theory

Quantitatively:



Shape of the self-similar cascade
On lattice, follow the evolution of gauge fields (A;, E;):

A=Y T[E%]+ > 2ReTxr[1-0],

sites plaquettes
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Shape of the self-similar cascade
In kinetic theory, interactions through medium-corrected matrix-elements

df
— = —C2<—>2[f] C1<—>2[f]
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Shape of the self-similar cascade
In kinetic theory, interactions through medium-corrected matrix-elements

df
— = —C2<—>2[f] C1<—>2[f]
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Lattice, cont. extrapolated
— .« KT, soft splitting approximation
— KT, full 1-2
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Neutron star radii from perturbation theory: 10064062
NNLO Equation of state for T =0, ug # 0, ms # 0:
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Other stuff:
@ Thermal photon production rate to NLO 1302.5970
@ High-T eff. theories for thermodynamics: 0801.1566
@ Overlap fermions with staggered kernel: 1202.1867
@ Extra-dimensions on lattice: 1003.4643



