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Heavy-ion collisions well described by relativistic hydrodynamics:

Hydro is an effective theory: expansion around local thermal eq.

Tµν = T eq
µν + small corrections

What are properties of (generic) quantum fields in equilibrium?

. . . but initial state far from thermal equlibrium

How do (generic) quantum fields relax towards equilibrium?

Applications elsewhere: cosmological relics, reheating, cold atomic
gases, neutron stars. . .
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Far-from-equilibrium dynamics

For generic theories, only weak coupling methods available:

Mostly parametric estimates, not even LO results

Even at weak coupling often non-perturbative: strong fields, secular
divergences, instabilities. . .

Weak coupling provides scale separations

Case-by-case effective theories

Effective kinetic theory
Classical field theory
Hard loop effective theory/ Vlasov equations
. . .



Far-from-equilibrium dynamics
Simple example: what happens if you have too many soft gluons
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Quantitatively:
Strong fields (f ≫ 1): Classical (lat.) field theory

But not too (f ≪ 1/α): Effective kinetic theory



Far-from-equilibrium dynamics
Simple example: what happens if you have too many soft gluons

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

Quantitatively:
Strong fields (f ≫ 1): Classical (lat.) field theory

But not too (f ≪ 1/α): Effective kinetic theory



Far-from-equilibrium dynamics
Simple example: what happens if you have too many soft gluons

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

Quantitatively:
Strong fields (f ≫ 1): Classical (lat.) field theory

But not too (f ≪ 1/α): Effective kinetic theory



Shape of the self-similar cascade
On lattice, follow the evolution of gauge fields (Ai , Ei ):
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Shape of the self-similar cascade
In kinetic theory, interactions through medium-corrected matrix-elements
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Shape of the self-similar cascade
In kinetic theory, interactions through medium-corrected matrix-elements
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Neutron star radii from perturbation theory: 1006.4062

NNLO Equation of state for T = 0, µB ̸= 0, ms ̸= 0:
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Other stuff:

Thermal photon production rate to NLO 1302.5970

High-T eff. theories for thermodynamics: 0801.1566

Overlap fermions with staggered kernel: 1202.1867

Extra-dimensions on lattice: 1003.4643


