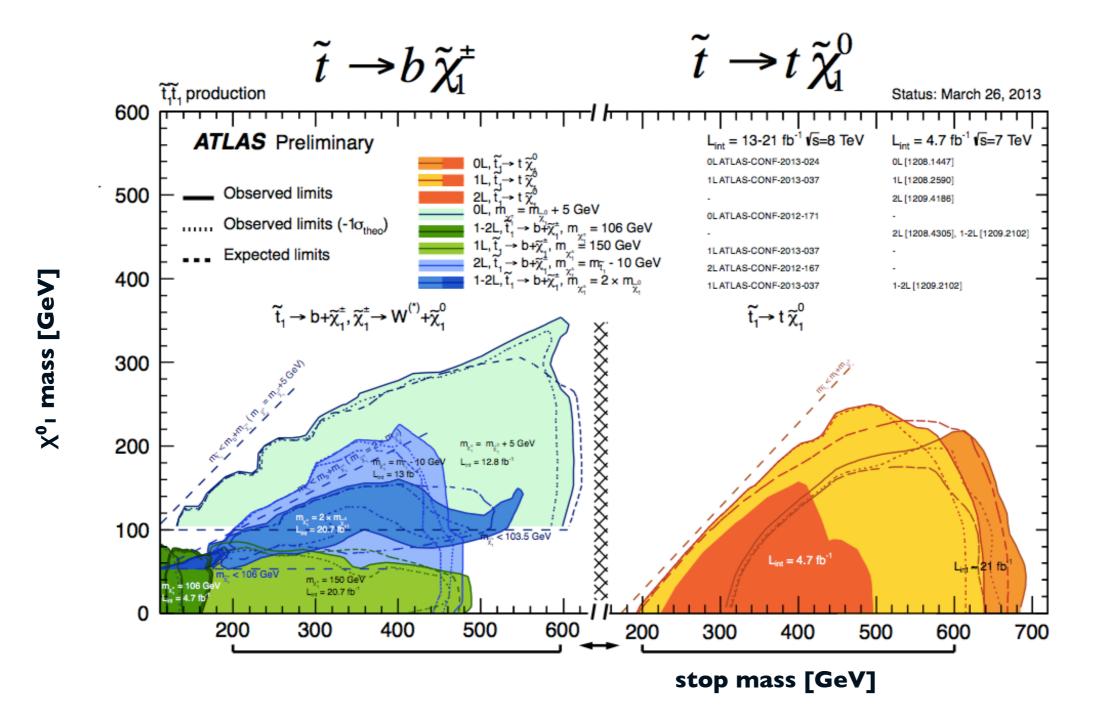

QCD/LHC activities in TH

- Key focus: Theoretical work directly related to the modeling and the interpretation of the data from high-energy collisions (LHC, Tevatron, cosmic rays,), including both SM and BSM aspects.
 - calculations for cross sections, with ever increasing accuracy, for processes of ever increasing complexity:
 - development of new "analytical" approaches/tools, as well as "numerical"
 - automatization of calculations
 - modeling of final states, including the transition partons -> particles
 - identification of analysis strategies, to be exploited by the experiments
 - close interaction with the LHC experiments

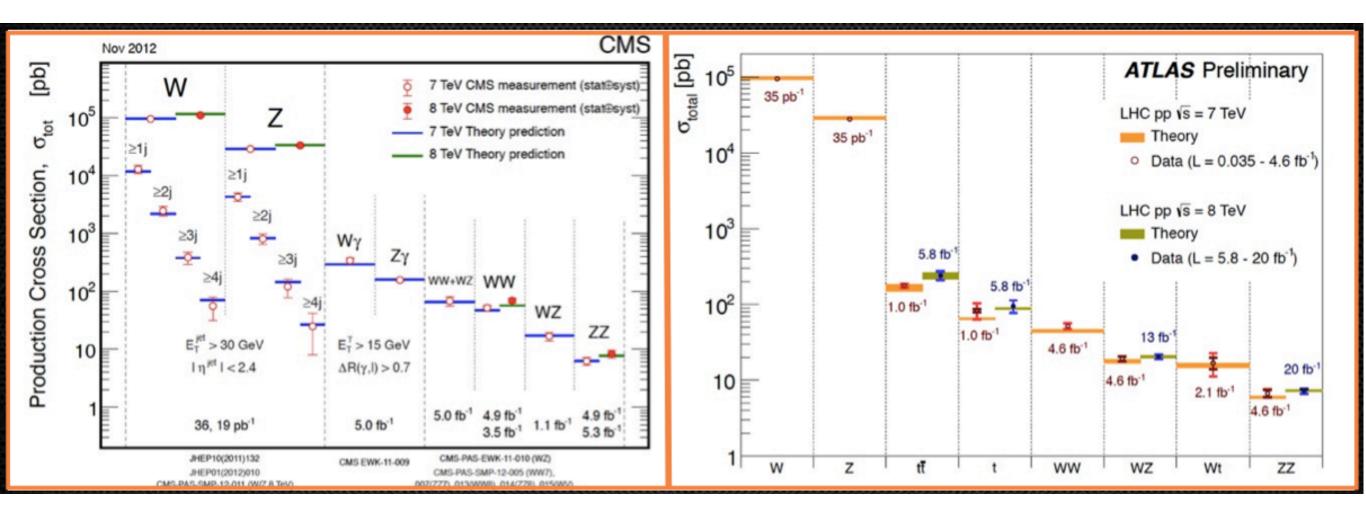
Key outcomes of 3 yrs at the LHC: I

I: The Higgs signal has been detected through sharp mass peaks in several channels


II: Its production and decay rates are consistent with the SM expectation, at the +/- 20% level

.... how far can we push the accuracy of these tests, and probe the mechanism of EWSB?

Key outcomes of 3 yrs at the LHC: 2



.... how to access regions of parameters of BSM models where the sensitivity is low?

Key outcomes of 3 yrs at the LHC: 3

The theoretical description of high-Q² processes at the LHC is very good

.... but must and can be improved

Current challenges for the field: precision

CMS submission to Strategy Group,

https://indico.cern.ch/contributionDisplay.py?contribId=177&confld=175067

	Uncertainty (%)			
Coupling	300 fb ⁻¹		3000 fb^{-1}	
	Scenario 1	Scenario 2	Scenario 1	Scenario 2
κ_{γ}	6.5	5.1	5.4	1.5
$\kappa_{\gamma} \kappa_V$	5.7	2.7	4.5	1.0
κ_g	11	5.7	7.5	2.7
$rac{\kappa_g}{\kappa_b}$	15	6.9	11	2.7
κ_t	14	8.7	8.0	3.9
$\kappa_{ au}$	8.5	5.1	5.4	2.0

Plus Hµµ coupling to better than 5% at 3000fb^{-1}

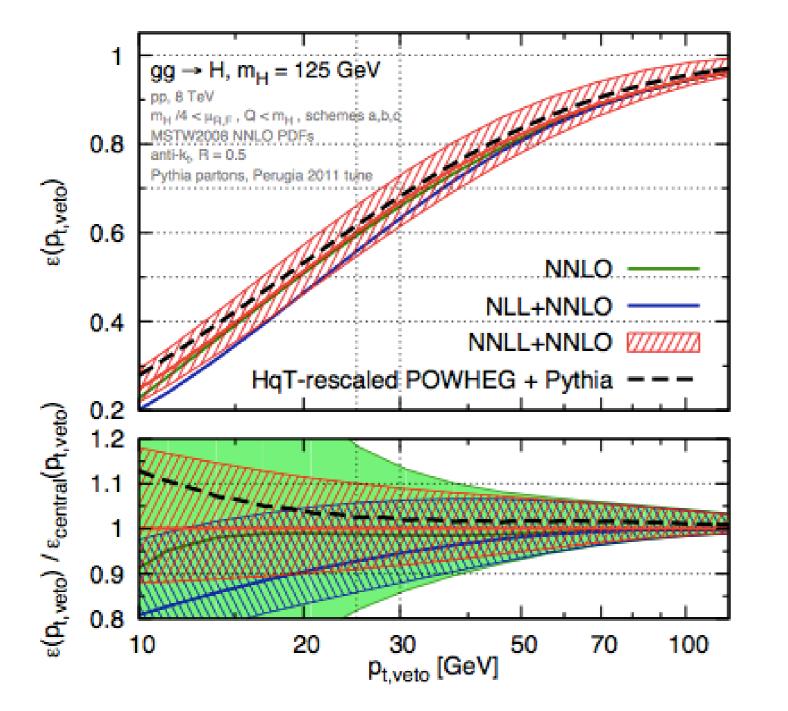
Scenario I: same systematics as 2012 (TH and EXP) Scenario 2: half the TH syst, and scale with I/sqrt(L) the EXP syst

Note: assume no invisible Higgs decay contributing to the Higgs width

Note: results of scenario 2 @ 3000/fb are overall as powerful as LC@500GeV !!

Current challenges for the field: precision

Theoretical uncertainties on production rates (Higgs XSWG, arXiv:1101.0593)


I 4 TeV	δ(pert. theory)	$\delta(PDF, \alpha_S)$		
gg→H	± 10 %	± 7%		
VBF (₩₩→H)	± %	± 2%		
qq→WH	± 0.5 %	± 4%		
(qq,gg)→ZH	± 2 %	± 4%		
(qq,gg)→ttH	± 8 %	± 9%		
Improve with higher-loop calculations:				

Improve with higher-loop calculations: gg->H @ NNNLO ttH @ NNLO

Improve with dedicated QCD measurements, and appropriate calculations

Current challenges for the field: accurate description of final states

- to properly model experimental selection cuts
- to properly model the separation between signals and background
- to improve the sensitivity to rare and "stealthy" final states in BSM searches

Ex. jet veto efficiency, required to reduce bg's to $H \rightarrow WW^*$

Banfi, Monni, Salam, Zanderighi, arXiv:1206.4998

Long-term group members:

- Fellows and staff presenting themselves in this session
 - Korinna Zapp (Fellow 2012-2014, attending a workshop in S.Africa)
 - Giulia Zanderighi (staff, arriving Jan I)
 - Guido Altarelli (Emeritus Staff)

Common group activities

- Collider Cross Talk (Thursday morning, I Iam)
- Friday QCD lunch (meet outside common room at 12:45pm)
- Friday seminar

Further opportunities for collaboration

• Various WGs (PDF4LHC, LHC WGs) and Workshop activities are regularly running at CERN

LHC Physics Centre at CERN (LPCC)

- Umbrella for activities of common interest to all LHC experiments:
 - contacts/interactions with the theory community, via Workshops or Working Group activities:
 - discussion/interpretation of data
 - development of theory tools used by the experiments
 - combination of experimental results from different experiments
 - LHC WG's (e.g. Top, EW, etc)
 - definition of common physics programmes (e.g. Forward Physics)
 - discussion and support for the development of tools. Examples: Detector Simulation tools (Geant), B-decay tables and generators (EvtGen), Statistical analysis tools (RooStat, etc)
 - organization of tutorials (e.g. Rivet 2 tutorial scheduled for November 21)
 - organization of seminars by the LHC experiments (Tue at 11am)
 - etc.etc.

Follow all LPCC activities from the web page http://cern.ch/lpcc

LPCC links

WELCOME

About the LPCC Visit the LPCC Subscribe to LPCC News

LHC WORKING GROUPS

MB & UE WG

Electroweak WG Rate normalization WG Top WG

Forward Physics WG

EVENTS

Forthcoming events Past events LHC PUBLICATIONS

STUDENTS RESOURCES

Useful links

CERN LHC & exps LHC centres in other Labs HEP

Latest LHC data publications (full list)

ALICE

Two and Three-Pion Quantum

News

LHC analysis projects for PhD students in the CERN ATLAS group

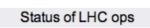
01/28/2013

The CERN ATLAS group offers opportunities for the supervision of PhD students, to be engaged in projects of LHC data analyses. For more details, see

http://lpcc.web.cern.ch/LPCC/index.php?page=misc Read More...

MCPLOTS release 02/17/2011

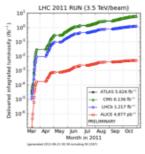
<u>MCPLOTS</u> is a new cern-based website for Monte Carlo comparisons, intended as a simple browsable repository of plots comparing HEP event generators to a wide variety of available experimental data, mainly based on the RIVET analysis tool. For more details: Read More...


Forthcoming events

Next 2 weeks

QCD Tools for LHC Physics: From 8 to 14 TeV - What\'s needed and why?

$11/14/2013 \parallel 09:00 \Longrightarrow 11/15/2013 \parallel 18:00$


The meeting is designed to promote an informal, loosely structured, working atmosphere between experimentalists and phenomenologists, who are actively confronting precision predictions and comparisons with LHC data, with a goal to

LHC programme coordination

SHUTDOWN

LHC integrated luminosity from 2011-2012 runs charts

Coming events at CERN

Academic Training Lecture Regular Programme, 05/11, 11h -<u>The Higgs Particle (2/3)</u> by Kado, Marumi

LHC Seminar, 05/11, 11h - <u>CP</u> violation in charmless two-body B decays at LHCb by Perazzini, Stefano

Conferences & Workshops, 06/11, 8h - <u>CERN Theory Group Retreat</u> by Mangano, Michelangelo & Antoniadis, Ignatios

Academic Training Lecture Regular Programme, 06/11, 11h -

<u>The Higgs Particle (3/3)</u> by Kado, Marumi

Sign-up for WG mailing list from the respective web pages

Myself

- Scientific interests: all of the above and more.
- In charge of the LPCC
- Co-leading the "hadron collider physics" part of the FCC study, with F.Gianotti (detectors) and A.Ball (detector/machine interface)
 - initially steer the work in these directions:

FHC.1.1 Exploration of EW Symmetry Breaking (EWSB)FHC.1.2 Exploration of BSM phenomenaFHC.1.3 Continued exploration of SM particlesFHC.1.4 Opportunities other than pp physicsFHC.1.5 Theoretical tools for the study of 100 TeV collisions

- Kickoff mtg of the FCC Study: Febr 12-14 2014 (will cover all aspects, from civil engineering to magnet development, with little space for physics)
 - pre-meeting focused on physics: Febr 10-11
- will promote strong collaboration with parallel efforts in China, and in the US

Propose a meeting, tomorrow at 6pm, to have a first discussion on topics, plans, etc