

TH Retreat, Nov 7, 2013

Made it to Hollywood ©

The Parking Spot Escalation

Sheldon Cooper busy with 6 loops...

This talk:

1) UV divergences in $D=4$ and higher dimensions:

- Question of SUGRA UV finiteness/divergences

2) Hidden structures in gauge theory and gravity:

- Duality between color and kinematics
- Gravity as a double copy of gauge theory

3) General multi-loop methods:

- Towards two-loop QCD automation

1) Question of supergravity finiteness...

Parameter space for UV divergences in $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

5-loop UV calc. will give strong indication of $\mathcal{N}=8$ finiteness/divergence

1) Question of supergravity finiteness...

Parameter space for UV divergences in $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

5-loop UV calc. will give strong indication of $\mathcal{N}=8$ finiteness/divergence

2) Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}{ }^{\text {color factors }}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Duality: color \leftrightarrow kinematics Bern, Carrasco, HJ

Some details of color-kinematics duality

Bern, Carrasco, HJ
can be checked for 4 pt on-shell ampl. using Feynman rules

Example with two quarks:

$$
\varepsilon_{2} \cdot\left(\bar{u}_{1} V u_{3}\right) \cdot \varepsilon_{4}=\frac{\bar{u}_{1 \neq} \not \phi_{t} \not_{2} u_{3}-\bar{u}_{1 \neq \phi_{2} \phi_{s} \oiint_{4} u_{3}}^{c b a}=T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}}{}
$$

1. $\left(A^{\mu}\right)^{4}$ contact interactions absorbed into cubic graphs

- by hand $1=s / s$
- or by auxiliary field $B \sim\left(A^{\mu}\right)^{2}$

2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr et al.
4. Enforces (BCJ) relations on partial amplitudes \rightarrow ($n-3$)! basis
5. Same/similar relations control string theory S-matrix

Gravity is a double copy

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{align*}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar } t \\
\text { Lewellen } \\
\text { works at }
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity + axion+ dilaton }
\end{array}
$$

Example: 2-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(a)
(d)

(b)

(c)

$\mathcal{I}^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator
(a),(b)	$\frac{1}{4}\left(\gamma_{12}\left(2 s_{45}-s_{12}+\tau_{2 p}-\tau_{1 p}\right)+\gamma_{23}\left(s_{45}+2 s_{12}-\tau_{2 p}+\tau_{3 p}\right)\right.$
	$\left.+2 \gamma_{45}\left(\tau_{5 p}-\tau_{4 p}\right)+\gamma_{13}\left(s_{12}+s_{45}-\tau_{1 p}+\tau_{3 p}\right)\right)$
(c)	$\frac{1}{4}\left(\gamma_{15}\left(\tau_{5 p}-\tau_{1 p}\right)+\gamma_{25}\left(s_{12}-\tau_{2 p}+\tau_{5 p}\right)+\gamma_{12}\left(s_{34}+\tau_{2 p}-\tau_{1 p}+2 s_{15}+2 \tau_{1 q}-2 \tau_{2 q}\right)\right.$ $\left.+\gamma_{45}\left(\tau_{4 q}-\tau_{5 q}\right)-\gamma_{35}\left(s_{34}-\tau_{3 q}+\tau_{5 q}\right)+\gamma_{34}\left(s_{12}+\tau_{3 q}-\tau_{4 q}+2 s_{45}+2 \tau_{4 p}-2 \tau_{3 p}\right)\right)$
(d)-(f)	$\gamma_{12} s_{45}-\frac{1}{4}\left(2 \gamma_{12}+\gamma_{13}-\gamma_{23}\right) s_{12}$

$\mathcal{N}=8$ SG obtained from numerator double copies

$$
\tau_{i p}=2 k_{i} \cdot p
$$

3) Two-loop QCD automation

Maximal Unitarity at two loops H.J. Kosower, Larsen

- Complete two-loop integral basis (massless particles)

$$
\text { Ampl }=\sum_{j \in \text { Basis }} c_{j} \operatorname{Int}_{j}+\text { Rational }
$$

- Refined unitarity method
- Maximal cut method
- Integral contour $\leftarrow \rightarrow$ IBP relations
- projectors: $\mathrm{Cut}_{j}\left[\mathrm{Int}_{i}\right]=\delta_{i j}$
- coefficients: $\mathrm{Cut}_{j}[\mathrm{Ampl}]=c_{j}$

