Henrik Johansson

- Scattering amplitudes
- SYM, Supergravity, BLG/ABJM
- Planar & non-planar

R

- Gravity UV behavior
- Color-kinematics duality
- Towards 2-loop QCD

TH Retreat, Nov 7, 2013

Made it to Hollywood 🙂

The Parking Spot Escalation

Sheldon Cooper busy with 6 loops...

This talk:

1) UV divergences in *D*=4 and higher dimensions:

Question of SUGRA UV finiteness/divergences

2) Hidden structures in gauge theory and gravity:

- Duality between color and kinematics
- Gravity as a double copy of gauge theory
- 3) General multi-loop methods:
 - Towards two-loop QCD automation

1) Question of supergravity finiteness...

Parameter space for UV divergences in \mathcal{N} = 8 SUGRA and \mathcal{N} = 4 SYM

5-loop UV calc. will give strong indication of \mathcal{N} = 8 finiteness/divergence

1) Question of supergravity finiteness...

Parameter space for UV divergences in \mathcal{N} = 8 SUGRA and \mathcal{N} = 4 SYM

5-loop UV calc. will give strong indication of \mathcal{N} = 8 finiteness/divergence

2) Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

• Amplitude represented by cubic graphs:

Color

$$\mathcal{A}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}} \leftarrow \text{propagators}$$
Color & kinematic numerators satisfy same relations:

$$\int \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}} \leftarrow \text{propagators}$$
Jacobi identity $f^{adc}f^{ceb} = f^{eac}f^{cbd} - f^{abc}f^{cde}$

$$\int \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}} \leftarrow \text{propagators}$$
Jacobi identity $f^{adc}f^{ceb} = f^{eac}f^{cbd} - f^{abc}f^{cde}$

$$\int \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}} \leftarrow \text{propagators}$$

Duality: color ↔ kinematics

Bern, Carrasco, HJ

- numerators

Some details of color-kinematics duality

can be checked for 4pt on-shell ampl. using Feynman rules

Example with two quarks:

- **1.** $(A^{\mu})^4$ contact interactions absorbed into cubic graphs
 - by hand 1=s/s
 - or by auxiliary field $B \sim (A^{\mu})^2$
- 2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
- 3. Known to work at tree level: all-*n* example Kiermaier; Bjerrum-Bohr et al.
- 4. Enforces (BCJ) relations on partial amplitudes \rightarrow (*n*-3)! basis
- 5. Same/similar relations control string theory S-matrix

Bjerrum-Bohr, Damgaard, Vanhove; Stieberger

Gravity is a double copy

• Gravity amplitudes obtained by replacing color with kinematics

similar to Kawai-

works at loop level

Lewellen-Tye but

• The two numerators can belong to different theories:

$$\begin{array}{ccc} n_i & \tilde{n}_i \\ (\mathcal{N}=4) \times (\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text{ sugra} \\ (\mathcal{N}=4) \times (\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text{ sugra} \\ (\mathcal{N}=4) \times (\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text{ sugra} \end{array}$$

 $(\mathcal{N}=0) \times (\mathcal{N}=0) \rightarrow$ Einstein gravity + axion+ dilaton

Example: 2-loop 5-pts \mathcal{N} =4 SYM and \mathcal{N} =8 SG

Carrasco, HJ 1106.4711 [hep-th]

The 2-loop 5-point amplitude with duality exposed

$\mathcal{I}^{(x)}$	$\mathcal{N} = 4$ Super-Yang-Mills ($\sqrt{\mathcal{N} = 8}$ supergravity) numerator	
(a),(b)	$rac{1}{4}\Big(\gamma_{12}(2s_{45}-s_{12}+ au_{2p}- au_{1p})+\gamma_{23}(s_{45}+2s_{12}- au_{2p}+ au_{3p})$	J
	$+ 2\gamma_{45}(au_{5p} - au_{4p}) + \gamma_{13}(s_{12} + s_{45} - au_{1p} + au_{3p}) \Big)$	fr
(c)	$\frac{1}{4} \Big(\gamma_{15}(\tau_{5p} - \tau_{1p}) + \gamma_{25}(s_{12} - \tau_{2p} + \tau_{5p}) + \gamma_{12}(s_{34} + \tau_{2p} - \tau_{1p} + 2s_{15} + 2\tau_{1q} - 2\tau_{2q}) \Big)$	d
	$+ \left. \gamma_{45}(\tau_{4q} - \tau_{5q}) - \gamma_{35}(s_{34} - \tau_{3q} + \tau_{5q}) + \gamma_{34}(s_{12} + \tau_{3q} - \tau_{4q} + 2s_{45} + 2\tau_{4p} - 2\tau_{3p}) \right) \\$	
(d)-(f)	$\gamma_{12}s_{45} - rac{1}{4} \Big(2\gamma_{12} + \gamma_{13} - \gamma_{23} \Big) s_{12}$	

 \mathcal{N} = 8 SG obtained from numerator double copies

 $au_{ip} = 2k_i \cdot p$

3) Two-loop QCD automation

Maximal Unitarity at two loops H.J. Kosower, Larsen

Complete two-loop integral basis (massless particles)

 $\operatorname{Ampl} = \sum_{j \in \operatorname{Basis}} c_j \operatorname{Int}_j + \operatorname{Rational}$

- Refined unitarity method
 - Maximal cut method
 - Integral contour $\leftarrow \rightarrow$ IBP relations
 - **•** projectors: $\operatorname{Cut}_{j}[\operatorname{Int}_{i}] = \delta_{ij}$
 - coefficients: $\operatorname{Cut}_{j}[\operatorname{Ampl}] = c_{j}$

