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  Henrik Johansson            
     -  Scattering amplitudes 
     -  SYM, Supergravity, BLG/ABJM 
     -  Planar & non-planar 
     -  Gravity UV behavior 
     -  Color-kinematics duality 
     -  Towards 2-loop QCD 
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FIG. 2: Graphs 36 through 68 for the planar six-loop four-point amplitude.
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In four dimensions, dual conformal invariance requires that each term in the integrand scales
as [32]
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The integrands of planar MSYM in D dimensions have been shown to transform in exactly
the same fashion to all loop orders, at least for D ≤ 6 [37, 38]. This property is sufficient
for our purposes, since we are mainly interested in the integrand in D = 5.

The (L+1)-particle cuts can also be used to generate the complete list of graphs needed
at six loops. One considers all possible sewings of two tree-level cubic graphs that appear in
these cuts [12]. (We modify the procedure slightly compared to ref. [12] by including only
diagrams with cubic vertices.) In principle there are dual conformal graphs with four- or
higher-point vertices that are not generated by the product of tree graphs of the (L + 1)-
particle cuts; however, all such potential contributions, including those not detectable in the
(L+1)-particle cuts, can be assigned to graphs with only cubic vertices by multiplying and
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Made it to Hollywood J 

The Parking Spot Escalation 

Sheldon Cooper busy with 6 loops… 



Henrik Johansson 

This talk: 

 

1) UV divergences in D=4 and higher dimensions: 
!   Question of SUGRA UV finiteness/divergences 
 

2) Hidden structures in gauge theory and gravity: 
!   Duality between color and kinematics 
!   Gravity as a double copy of gauge theory 

3) General multi-loop methods: 
!   Towards two-loop QCD automation  



Henrik Johansson 

1) Question of supergravity finiteness…  
Parameter space for UV divergences in N = 8 SUGRA and N = 4 SYM 
 

N = 4 SYM and current 
trend for N = 8 SUGRA 

pessimistic power 
counting prediction 
for N = 8 SUGRA 

calculations: 
1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti  
3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 
6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 

Finite �

Divergent�

? �

5-loop UV calc. will give strong indication of N = 8  finiteness/divergence   
�
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26/5 or 24/5 ? 

Finite �

Divergent�
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Henrik Johansson 

2) Color-Kinematics Duality 
Yang-Mills theories are controlled by a kinematic Lie algebra 
 

• Amplitude represented by cubic graphs:   

Color & kinematic  
numerators satisfy  
same relations: 

Duality: color ↔ kinematics  

Jacobi 
identity 

antisymmetry 

propagators 

color factors 

numerators 

Bern, Carrasco, HJ   

fbac = � fabc
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Some details of color-kinematics duality 

can be checked for 4pt on-shell ampl. using Feynman rules 
Bern, Carrasco, HJ 

Example with  
two quarks: 

1.           contact interactions absorbed into cubic graphs 
•  by hand 1=s/s 
•  or by auxiliary field 

2.  Beyond 4-pts duality not automatic è Lagrangian reorganization 
3.  Known to work at tree level: all-n example  Kiermaier; Bjerrum-Bohr et al. 

4.  Enforces (BCJ) relations on partial amplitudes è (n-3)! basis 
5.  Same/similar relations control string theory S-matrix 

          Bjerrum-Bohr, Damgaard, Vanhove; Stieberger 
 

(Aµ)4

B ⇠ (Aµ)2
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Gravity is a double copy 

•  The two numerators can belong to different theories: 

•  Gravity amplitudes obtained by replacing color with kinematics 

(N =4) × (N =4)   →     N =8 sugra 
(N =4) × (N =2)   →     N =6 sugra 

(N =0) × (N =0)   →     Einstein gravity + axion+ dilaton 

(N =4) × (N =0)   →     N =4 sugra 

BCJ 

similar to Kawai- 
Lewellen-Tye but  
works at loop level 



Henrik Johansson 

Example: 2-loop 5-pts N =4 SYM and N =8 SG 

The 2-loop 5-point 
amplitude with 
duality exposed 

N = 8 SG obtained 
from numerator 
double copies 

Carrasco, HJ   

1106.4711 [hep-th] 



3) Two-loop QCD automation 

Henrik Johansson 10 

Maximal Unitarity at two loops   H.J. Kosower, Larsen 
  
!   Complete two-loop integral basis  

               (massless particles) 
 

  

!  Refined unitarity method 
!   Maximal cut method  
!   Integral contour ßà IBP relations 
!   projectors: 
!   coefficients:  

multi-loop N=4 
methods 
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FIG. 1: Sample graphs for the five-loop four-point N = 4
sYM amplitude. The graph labels correspond to the ones
used in the ancillary file [23].

three-loop counterterm [20]; the coefficient of this coun-
terterm has recently been explicitly shown to vanish [12].
(See ref. [21] for a string-based argument.) This exhibits
better behavior than implied by known symmetry con-
siderations and is in line with cancellations suggested by
unitarity arguments [22]. In particular, it emphasizes the
importance of directly checking the amplitudes whether
eq. (1) holds for N = 8 supergravity at L = 5.
Our construction of the five-loop four-point amplitude

of N = 4 sYM theory organizes it in the form,

A
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where the second sum runs over a set of 416 distinct
(non-isomorphic) graphs with only cubic (trivalent) ver-
tices. Some sample graphs are shown in fig. 1. The
first sum runs over all 24 permutations of external leg
labels indicated by S4. The symmetry factors Si remove
overcounts, including those arising from internal auto-
morphism symmetries with external legs fixed. Here we
absorb all contact terms (i.e. terms with fewer than the
maximum number of propagators) into graphs with only
cubic vertices, by multiplying and dividing by appropri-
ate propagators. We denote external momenta by ki for
i = 1, . . . , 4 and the five independent loop momenta by
lj for j = 5, . . . , 9. The remaining lj are linear combi-
nations of these. The color factors Ci of all graphs are
obtained by dressing every three-vertex in the graph with
a factor of f̃abc = Tr([T a, T b]T c), where the gauge group
generators T a are normalized as Tr(T aT b) = δab. The
gauge coupling is g and the crossing symmetric prefac-
tor stAtree

4 is in terms of the color-orderedD-dimensional
tree amplitude Atree

4 ≡ Atree
4 (1, 2, 3, 4) and s = (k1+k2)2

and t = (k2 + k3)2.
To construct the numerators Ni, we use the method of

maximal cuts [8], based on the unitarity method [24]. Ap-
plication of this method and various strategies for greatly
streamlining the construction of the numerators has been
described in considerable detail in ref. [6], so here we
give only a brief summary. The method works in D di-

N3MCNMCMC N2MC

FIG. 2: Sample Nk-maximal cuts for k = 0, 1, 2, 3. The ex-
posed lines are all cut.
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FIG. 3: Examples of simple cuts used to speed up the calcu-
lation. (a) is a two particle cut, (b) a box cut and (c) is a
sample application of BCJ amplitude relations. The exposed
lines are all cut.

mensions and can be used to obtain local expressions,
from which UV divergences can be straightforwardly ex-
tracted.
We start with an ansatz for the diagram numerators

containing free parameters to be determined by matching
against generalized unitarity cuts. Our ansatz is a poly-
nomial of degree four in the kinematic invariants, subject
to the power-counting constraint that no term has more
than six powers of loop momentum. We also demand
that each numerator respects the automorphism symme-
tries of the graph. Once a solution is found satisfying
a complete set of cut conditions, we have the integrand.
If an inconsistency is encountered, the ansatz must be
enlarged. We note that the solutions for numerators are
not unique and different choices can be mapped into each
other by generalized gauge transformations [9, 10, 25].
The parameters of the ansatz are determined from gen-

eralized unitarity cuts that decompose a loop integrand
into products of on-shell tree amplitudes summed over
all intermediate states,

∑

states A
tree
(1) A

tree
(2) · · ·Atree

(m). These
cuts are organized according to the number of cut prop-
agators that are replaced with on-shell conditions. We
start from the maximal cuts (MCs) where all 16 internal
propagators cut. After obtaining the MCs, we then con-
structs all next-to-maximal cuts (NMCs), with 15 cut
propagators. We continue this process, systematically
constructing analytic expressions for (next-to)k-maximal
cuts (NkMCs) with fewer and fewer imposed cut condi-
tions. For the five-loop four-point N = 4 sYM amplitude
this process terminates at k = 3, since the power count-
ing of the theory prevents numerator factors from can-

Ampl =

X

j2Basis

cj Intj +Rational

on-shell NLO methods 

Cutj [Ampl] = cj

Cutj [Inti] = �ij


