
Playing with gravity
 at different scales

Diego Blas Temiño
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Flavours of Lorentz violation

 Beyond power counting Hořava gravity

 pQFT for gravity without Lorentz invariance
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 Lorentz invariance emergence

 Entanglement entropy in non-relativistic field theories

IR fixed points of RG flow tend to make LI emergent!
Use analogue-circuits to show it non-perturbatively! 



Tests of gravity

 Motivation: alternatives to GR are important for
     > quantum gravity and cosmology (Λ?)
     > understanding GR ‘unique’ features

 Where to look?
     > theoretical constraints (stability of Minkowski,...)
     > experiments. They span many regimes.
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Tests of gravity II: cosmology

relativistic, small �

CMB, matter power spectrum
http://class-code.net
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scales, the peaks are further suppressed by Silk damp-
ing. Indeed, due to the shift in the phase of oscillations,
they correspond to smaller physical scales at recombina-
tion, that are more a↵ected by di↵usion damping. The
Doppler e↵ect, which depends on ⇥̇

�

at recombination,
is also modified. Finally, a prominent feature clearly vis-
ible on the plot is the significant enhancement of the
ISW contribution in the range 10 < l < 100, i.e. be-
tween the regions usually a↵ected by the early ISW e↵ect
(100 < l < 200) and the late ISW e↵ect (2 < l < 10).
The ISW e↵ect is proportional to the time derivative of
the gravitational potential. In the ⇤CDM model, the po-
tential varies only during the epochs of radiation and ⇤
domination. However, in the enhanced gravity model, the
growth of density perturbations entails a slow increase of
the gravitational potential also during the matter domi-
nated era, enhancing the ISW e↵ect on a wide range of
scales.

All in all, we conclude that the enhanced gravity model
produces significant modifications in the spectrum of
CMB anisotropies. The pattern of these modifications
is quite specific, and apparently not degenerate with the
e↵ects of standard cosmological parameters.

Shear model : We recall that in this model, the � field
generates some anisotropic stress and contributes to the
shear of the perturbed metric, as described by Eq. (43).
The presence of shear tends to smooth out metric per-
turbations on scales smaller than the sound horizon asso-
ciated with the sound speed of the � field. Note that for
parameters of the particular shear model studied here,
the field � is superluminal16 (c

�

=
p

3) and the suppres-
sion appears already on super-Hubble scales.

This is indeed observed on the top panel of Fig. 1,
where the gravitational potential is clearly smaller (in
absolute value) compared to ⇤CDM. It also exhibits no-
table wiggles caused by oscillations in the �-field [4]. The
fact that c

�

is much larger than the photon-baryon sound
speed explains the shift between the phase of the oscil-
lations seen in  and in ⇥

�

. The suppression of  shifts
the zero-point of the oscillations in the photon tempera-
ture ⇥

�

. On the other hand, we do not see any shift in
the positions of the peaks, which is compatible with the
previous discussion: the self-gravity of radiation is not
modified in this model.

For fixed initial conditions ⇥
�

(⌧0), the amplitude of
the acoustic oscillations depends crucially on boosting
e↵ects, imprinted around the time of Hubble crossing,
and caused by the three gravitational driving terms on
the right-hand side of Eq. (44). In the shear model, the
amplitude of acoustic oscillations is damped as a conse-
quence of smaller metric fluctuations and reduced grav-
itational boosting. This translates into an overall sup-

16 As pointed above, this does not present any inconsistencies in
theories without Lorentz invariance.
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FIG. 2: Temperature anisotropy spectrum (solid) and its
decomposition in terms of Sachs–Wolfe (dotted), Doppler
(dashed) and Integrated Sachs–Wolfe (dot-dashed) contribu-
tions. For clarity, we do not show cross correlations between
these contributions. Thick black lines represent the ⇤CDM
model, while thin blue lines are used for the two ⇥CDM ref-
erence models.

pression of the SW e↵ect visible in the bottom panel of
Fig. 1.

On Fig. 2, we see that the Doppler and ISW contri-
butions to the total temperature spectrum C

`

are also
lower in the shear model than in ⇤CDM. The net result
is a uniform suppression of all peaks. One may expect
that this e↵ect could be compensated, at least partially,
by a rescaling of the initial amplitude of perturbations.
This suggests that pure shear models might be less con-
strained than enhanced gravity ones.

Our shear model is similar to the one studied in [11],
where it was claimed that the dominant e↵ect on the
CMB comes through the ISW. Our analysis demonstrates
that the changes in the SW and Doppler contributions
are equally important for this model.
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Tests of gravity III: binary pulsars
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FIG. 1. (Color online) Constraints on the (c+, c�) plane in Æther theory (left) and (�,�) plane in khronometric theory (right)
obtained by combining constraints derived from observations of PSR J1141-6545 [45], PSR J0348+0432 [46], PSR J0737-
3039 [47] and PSR J1738+0333 [48]. The areas outside the (allowed) shaded regions are ruled out by stability/Cherenkov
considerations (light blue), BBN (dark orange) and the combined binary pulsar constraints (dark purple). The red dotted line
corresponds to the values of the coupling constants required for the orbital decay rate to agree with the GR prediction in the
zero-sensitivity/weak-field limit. Observe that the new constraints are much more stringent than all others.

PSR J0348+0432 [46], and PSR J0737-3039 [47]. The
first two are pulsars on a 0.17-eccentricity, 4.74-hour or-
bit and on a O(10�6)-eccentricity, 2.46-hour orbit respec-
tively, around a white dwarf companion. The third is the
relativistic double pulsar binary, on a 0.088-eccentricity
and 2.45-hour orbit. These comparisons allow us to place
constraints on the coupling constants of the theory.

Another way to place constraints on Lorentz-violating
theories is to consider modifications to the conservative

sector , controlled by the Hamiltonian, which for example
a↵ects the orbital shape and precession rate. Lorentz-
violating corrections to the Hamiltonian induce preces-
sion of the spin and orbital angular momentum vectors.
Since such non-GR precession is not found in binary
pulsar observations, one can then place constraints on
Lorentz-violation. The constraints are cast in a model-
independent language by considering strong-field gener-
alizations of the parametrized post-Newtonian (PPN)
Hamiltonian. For example, binary pulsar observations
of PSR J1738+0333 [48] can be used to constrain the
strong-field PPN parameters associated with preferred-
frame e↵ects. We here calculate these parameters for
Einstein-Æther and khronometric theory, and then use
PSR J1738+0333 [48] to place constraints on the cou-
plings.

Combining all of these constraints, we obtain the
allowed coupling parameter space shown in Fig. 1
(Einstein-Æther theory in the left panel and khrono-
metric theory in the right panel). The colored regions

are those allowed after requiring stability and absence
of gravitational Cherenkov radiation [40–42] (light blue),
BBN constraints [31–33, 43] (dark orange) and binary
pulsar constraints (dark purple). The red dashed line
corresponds to the values of the coupling constants for
which the orbital decay rate equals the GR prediction,
assuming the sensitivities vanish and working at leading-
order in a weak-field expansion [39]. Observe that the
new constraints obtained here are much stronger than
all other constraints.
Binary pulsar constraints lead to regions of viable cou-

pling parameter space. This is because in deriving these
constraints one has to allow for di↵erent values of the cou-
pling constants (within the Solar System constraints) and
the sensitivities (because of the di↵erent possible EoSs),
and account for the observational error in the orbital de-
cay rate and the orbital period, as well as the error in
the inferred masses of the binary. The particular shape
of these viable regions is a result of the combination of the
constraints associated with di↵erent binary pulsars. For
example, dipole radiation is suppressed for double pulsar
binaries relative to pulsar - white dwarf systems, because
dipole radiation is proportional to the di↵erence of the
sensitivities and NSs have similar sensitivities. Therefore,
for double pulsar systems the orbital decay rate depends
mainly on the quadrupole term, which leads to a di↵erent
slope for the allowed region of coupling constants.
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WD-NS and NS-NS systems
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Precision (standard) cosmology

Euclid DES

LSST
WiggleZ, BOSS, PAU, WFIRST, 
HETDEX, JWST, SKA,... 

A lot of data on cosmic expansion
and structure formation

Precision (per cent) cosmology!



Cosmology beyond linear order

 Motivation: standard perturbation theory not well-behaved,  
can we understand the mildly non-linear regime?

 To win:  information (a lot!) on composition of the Universe, 
                gravitation, primordial features,...

w/ Mathias Garny, Konstandin
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-

12

NNNLO(P)
N-body

NNNLO(SPT)

Horizon Run 2, 
 Kim et al. 11

z=0.375

PT based on a
Padé resummation


