What does a Higgs boson eat during the winter ...and other essential details

Pauline Gagnon, CERN et Indiana University

Physicist on ATLAS experiment and communicator

CERN

- **# European Laboratory for Particle Physics**
- # 12000 scientists of 99 different nationalities
- **#** Financed by European countries
- # Many other countries participate in various projects
 Canada, United States, Japan, Israel, India, Pakistan etc.

Common goal: find out what matter is made of

The Legoland version of Copenhagen

At Legoland, here is what fundamental particles look like

What are the smallest building blocks of matter?

The only fundamental particles here are electrons and quarks

Protons and neutrons are made of quarks

Up: 6 (charge +2/3) and down quarks: (charge -1/3)

That's all you need to form all elements

Particles interact by exchanging other particles

The Standard Model

1. All matter is made of fundamental particles

2. Exchange particles called bosons are associated to forces

Major problem with the equations

The Standard Model only predicted massless particles

But we knew that the W⁺, W⁻ and Z⁰ bosons had a mass

How could the equations of the Standard Model generate massive particles?

Modify the equations of the Standard Model

In 1964, several theorists proposed a mecanism that would explain how particles could acquire mass

Tom Kibble, Gerald Guralnik, Carl Hagen, François Englert, Robert Brout, Peter Higgs

To generate mass, we need:

1. The Brout-Englert-Higgs mechanism

A mathematical description

2. The Higgs field

A real physical entity corresponding to this mechanism

3. The Higgs boson

The materialisation or proof of existence of all that

1. The Brout-Englert-Higgs mechanism

Theory predicted 4 massless bosons

The Brout-Englert-Higgs mechanism breaks this symmetry by remixing everything after injecting 3 fictitious particles

	Mass in GeV	Electric charge
photon	0	0
W ⁺	80.4 GeV	+1
W-	80.4 GeV	-1
Z^0	91.2 GeV	0

• <u>Mass</u>
In physics, mass is
resistance to movement

<u>E= m c²</u>
 Energy and Mass are equivalent

Energy conservation
 Energy can take several forms
 but its sum is always conserved

2. The Higgs field

Running on the beach, light and free like air

Then running in water

You get the impression of getting sluggish

With the Higgs field, it is as if the whole space is viscous

2. How does the Higgs field generate mass

Empty space, without a Higgs field B

The Higgs field gives mass without dissipating energy

How much mass?

The more a particle interacts with the Higgs field, the more mass it gets

photon

The mass in matter

Quarks mass: 11 MeV

Proton mass: 938 MeV

99% of the proton mass comes from the binding energy given by the gluons

To summarize, there are 3 aspects:

1. A mathematical tool:

The Brout-Englert-Higgs mechanism:

Z⁰ and W[±] get a mass but not photons

2. A physical entity:

The Higgs field filled all space shortly after the Big Bang

3. An excitation of the field:

The Higgs boson

3. The Higgs boson

The Higgs field → the surface of the ocean

The Higgs boson → a wave

Waves are excitations of the ocean surface We can create Higgs bosons by exciting the Higgs field

How can we create a Higgs boson?

We need to concentrate a huge amount of energy in a small point in space – that's the role of the LHC

The energy released during the collisions materialises to create particles: E=mc²

Decay of a Higgs boson

 $H \rightarrow ZZ$ or ZZ? Each $Z \rightarrow \mu\mu$

Dark matter mystery

Thank you for your visit

Blogs on Quantum Diaries

Pauline.Gagnon@cern.ch

The ATLAS detector: a giant camera

How to distinguish an event containing a Higgs boson from all other events?

Example: The gravitational field

In empty space:

- space-time is uniform
- light travels on a straight line

We do not see the gravitational fied but it affects everything, including light, passing near by

Great discovery

