Sensitivity of micromachined Joule-Thomson cooler to clogging due to moisture

Haishan Cao, S. Vanapalli, H.J. Holland C. Vermeer and H.J.M. ter Brake

University of Twente, The Netherlands
July 08, 2014

ICEC 25 – ICMC 2014 conference
July 7-11, 2014, University of Twente, The Netherlands
Microcooling development at UT

- **165 K**
- **30 K**

Temperature reduction

- **1997**
- **2001**
- **2003**
- **2007**
- **2009**
- **2011**
- **2013**

PhD: Johannes Burger

PhD: Pieter Lerou

PhD: Hendrie Derking

PhD: Haishan Cao

Microcooling development at UT with temperature reduction from 30 K to 165 K.
First clogging, results in too low mass-flow rate and warm-up followed by declogging (sublimation).
Clogging phenomenon: Theory

- Molecular diffusion process
 Fick’s law: (Mass diffusivity, m²·s⁻¹)
 \[
 \dot{n}_{dep} = D_{12} \frac{(p_c - p_b)}{0.5hRT}
 \]

- Surface kinetic process
 Hertz-Knudsen-Langmuir formula: (Mass accommodation coefficient, 1)
 \[
 \dot{n}_{dep} = \alpha \frac{(p_b - p_{sat})}{\sqrt{2\pi MRT}}
 \]

- Diffusion and kinetics process
 \[
 \dot{n}_{dep} = (p_c - p_{sat}) \sqrt{\frac{0.5hRT}{D_{12}}} + \sqrt{\frac{2\pi MRT}{\alpha}}
 \]
Investigation on clogging rate: nitrogen purifiers

<table>
<thead>
<tr>
<th>Purifier</th>
<th>Purification theory</th>
<th>Outlet moisture level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getter-filter</td>
<td>Adsorption</td>
<td>Fixed, 1 ppb</td>
</tr>
<tr>
<td>Cryo-filter</td>
<td>Deposition</td>
<td>Unfixed, temp. dependent</td>
</tr>
</tbody>
</table>
Investigation on clogging rate: microcooler

<table>
<thead>
<tr>
<th>Cryo-filter temp. (K)</th>
<th>Clogging temp. (K)</th>
<th>Saturation pressure (Pa)</th>
<th>Moisture level (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td><= 179</td>
<td>4.4E-3</td>
<td>0.5</td>
</tr>
<tr>
<td>180</td>
<td><= 192</td>
<td>4.9E-2</td>
<td>5.6</td>
</tr>
</tbody>
</table>

High pressure (MPa) | Low pressure (MPa) | Working fluid
8.7 | 0.6 | N₂ (5.0)
Investigation on clogging rate: microcooler

<table>
<thead>
<tr>
<th>Cryo-filter temp. (K)</th>
<th>Clogging temp. (K)</th>
<th>Saturation pressure (Pa)</th>
<th>Moisture level (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td><= 179</td>
<td>4.4E-3</td>
<td>0.5</td>
</tr>
<tr>
<td>180</td>
<td><= 192</td>
<td>4.9E-2</td>
<td>5.6</td>
</tr>
</tbody>
</table>

High pressure (MPa) | Low pressure (MPa) | Working fluid |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>0.6</td>
<td>N₂ (5.0)</td>
</tr>
</tbody>
</table>
Influence of moisture level in nitrogen gas
Influence of cold-end temperature of microcooler

- Mass-flow rate (mg s⁻¹) vs. Time (h)
 - 110 K
 - 120 K
 - 130 K

- Temperature (K) vs. Time (h)
 - 110 K
 - 120 K
 - 130 K

- Parasitic losses (mW) vs. Time (h)
 - 110 K
 - 120 K
 - 130 K

- Image showing microcooler with labels for Front side and Back side, and a note indicating Deposited water.
Conclusions

- Reason of clogging: Deposition of water molecules.

- Influence of moisture level in nitrogen gas: Mass-flow rate during the cool down.

- Influence of cold-end temperature of microcooler: Clogging rate during the operation.

- Measures to increase the operation time: Decrease the amount of H₂O in N₂ gas and vacuum; Decrease the temperature along the restriction.
Thank you for your attention!