Superconducting antenna concept for gravitational waves

A. Gulian, V. Nikoghosyan, L. Sica, J. Tollaksen
Chapman University, Institute for Quantum Studies, Orange CA & Burtonsville MD, USA

J. Foreman
Independent Researcher, Alexandria VA, USA

S. Nussinov
School of Physics & Astronomy, Tel-Aviv University, Israel
LIGO: $h \sim 10^{-23} - 10^{-24}$
Crab pulsar: $h \sim 10^{-26}$
Summary on Novel Antenna:

- Concept exploits quadrupolar action of GW on bimetallc superconducting antenna.
- The antenna transforms part of the GW energy into the motion of superfluid electrons; the motion is detected electronically.
- This design avoids Coulomb blockade of the electronic motion.
- Technical realization of the antenna may require technology development, but there is no showstopper.
- These devices will be able to detect gravitational waves with amplitudes as low as $h_0 \sim 10^{-26}$: Crab Pulsar is within the reach.
- Such sensitivity could be obtained at spatial scales smaller than 10 meters.
Starting Point

\[\Delta L = L h_0 \sin \omega t \]
Tidal action on a metallic wire

How to measure this?

R. Adler, 1976 : take two of them!
(Long conductors as antennae for gravitational radiation. *Nature* 259, 296-297.)
Quadrupolar tidal action on a wire:

\[q = V C << e \]

Not the best design!

A bridge connecting two bars

Coulomb blockade: in the right design gravity should not fight against electromagnetism
Thinking continued:

\[\Delta L = L h_0 \sin \omega t \]

Bimetallic bar, negative \(m_{\text{eff}} \)
Circular current, no charge accumulation

Seems like possibly right design. Bi-metalisity breaks the symmetry!
Why Superconductivity:
Motion of electrons in semiconductors and normal metals, though sometimes called “free”, is Aristotelian: it persists while the force is acting. Ohms law: \(j \sim v \sim eE \sim F \), \(v \sim F \), i.e., velocity in response to force
In superconductors \(\frac{dv}{dt} \sim E \), i.e., motion is Newtonian!

This difference has crucial consequences:
• S/C current response is greater by a factor \((\omega \tau)^{-1} \sim 10^{10+}\). Ten or more orders of magnitude more than justify SC.
• Price to pay: no negative masses for SC. Cooper pairs have a positive mass.
• Moreover, it looks like \(m_{CP} = 2m_0 \)!
Motion of electrons in gravity field: *Quo Vadis?*

Frozen lattice

Unfrozen lattice

\[e \downarrow g \quad e \uparrow g \]
Frozen lattice \hspace{1cm} 1968 \hspace{1cm} Unfrozen lattice

\[E = -\frac{mg}{e} \hspace{1cm} E = \alpha Mg/e \]

Some numbers

From Crab pulsar $\nu \sim 60\text{Hz}$, $h \sim 10^{-26}$, the energy flux density on Earth’s orbit $\sim 10^{-10}\text{ergs/(cm}^2\text{s)}$. \Rightarrow Current for 10x10cm2 cross section of conducting loop is $I \sim 10^{-13}\text{A}$. $E_{\text{kin}} \sim 10^{-39}\text{ergs}$. Efficiency is 10^{-31}.
“Spaghetti” Structure

layers with A and B swapped

- Currents move in opposite directions and cancel the magnetic field.
- The number of spaghetti depends on geometry; large but realistic.
At \(I = 1 \, fA \) and \(R = 5 \mu m \), \(B = \mu_0 I / (2R) \sim 10^{-16} T \).

SQUID noise floor \(3fT/Hz^{1/2} : 10^{-17} T / \text{1 day of measurement} \).

Freedom to exploit, say, 10 SQUIDs for different groups of layers, and/or get to weaker GW source detection, and/or reduce the observation time.
Noise Floor of the Detector

• Real noise floor of this antenna is due to normal resistance

\[\langle I_n^2 \rangle = 4 \left(\frac{k_B T}{R_n} \right) \delta \nu \]

• Two notes are important here:
 1) at low T the normal fluid (and its influence) dies out exponentially;
 2) bandwidth $\delta \nu$ can be made narrow for periodic signals (large integration time).

Our estimates indicate that achievable noise floor is about $10 \text{ fA/Hz}^{1/2}$, which inspires optimism, since current is bigger: $\sim 10^{-13} \text{ A.}$
Thank you!
Conclusions

• We elaborated a novel concept of the GW antenna. We see no showstopper for this concept and would welcome experts opinion on its viability.

• Hopefully, in parallel to other large-scale efforts, such as the LIGO approach and LISA mission or NANO gravitational initiative, the suggested concept will become useful for one of the most challenging experiments – the detection of gravitational waves.