Calculation and measurement of thermal radiation through a pipe-shaped shield

ICRR, Univ. of Tokyo, KEKA, NAOJB

Yusuke SAKAKIBARA, Nobuhiro KIMURAA, Toshikazu SUZUKIA, Kazuhiro YAMAMOTO, Shigeaki KOIKEA, Ryutaro TAKAHASHIB, Chihiro TOKOKU, Yoshio SAITOA, Tomotada AKUTSUB, Kazuaki KURODA

2014.7.10 ICEC 25 – ICMC 2014 (University of Twente, Enschede, the Netherlands)
Contents

• Interferometric cryogenic gravitational wave detector (KAGRA)

• Pipe-shaped radiation shield (duct shield)
 – Thermal radiation
 • Calculation
 • Measurement (supported by Jecc Torisha)

• Future work
KAGRA (Large-scale Cryogenic Gravitational wave Telescope)

- KAGRA aims to detect gravitational waves from coalescence of binary neutron stars more than once per year
- Features
 - Kamioka underground with small seismic motion
 - Mirrors (~20 kg) are cooled down to 20 K
 - Reduce thermal noise

http://www.gw.hep.osaka-cu.ac.jp/openworks/whatisgw.html
Purpose of duct shields

- Only suspension system is cooled down (3 km duct and SAS: 300 K)
- Mirror must be surrounded by radiation shields
- Holes for main laser are necessary
- Duct shields
 - To reduce thermal radiation
 - Duct to decrease solid angle to 300 K region
 - Duct reflects radiation
 - Baffles can reduce thermal radiation through duct shield
 - To cause no scattered light noise
 - Small vibration with rigid supports
• Baffles are designed to satisfy KAGRA requirement of thermal radiation and scattered light
• Duct and baffles are coated with black coating Solblack to absorb thermal radiation and scattered light
• Baffles are tilted to catch scattered light
• Baffles are tilted to catch scattered light
• Cooled down by one cryocooler
Calculation of thermal radiation

- Rays are reflected by duct shield many times -> power of rays is reduced
- Radiation was calculated by commercial ray-tracing software ZEMAX
 - Rays of thermal radiation were emitted with random direction
 - When ray hits duct shield, power of ray is multiplied by reflectivity
Measurement of thermal radiation

- Two aluminum plates suspended
 - Coated with Solblack to enhance emissivity or absorptivity
 - Plate 1 is heated up to 300 K and emits thermal radiation
 - Plate 2 absorbs radiation and is heated up
 - Calibration is conducted using heater on plate 2

Plates made by N. Kudoh (KEK)
Results

- Calculation predicts only order of magnitude of heat input
 - Measured reflectivity at 10 um of shield has error
 - Rays are reflected by shield many times
- Mirror will absorb 10 mW (It satisfies KAGRA requirement: 1 W including laser absorption)
• Experiment where PLATE 2 is heated up to 300 K and PLATE 1 absorbs radiation was conducted

• Heat transfer of left and right direction should be equal
 – Otherwise, even if two plates have same temperature, heat will be transferred
Results for duct shield No.2

- Thermal radiation through duct shield No.2 is near upper edge of calculation
 - Difference of reflectivity of Solblack by 0.1
- Difference of condition (uneven thickness, crack,...) of Solblack coating (under investigation)
Temperature log (duct shield No.1)

11°Cooled down

Power supply stopped

Plate1: heated up

Calibration

Plate2: heated up

Calibration

Failure

Heat load test

Heated up

Power supply stopped

Cooled down

Temperatures [K]

03/29 04/05 04/12 04/19 04/26

2014.7.10 ICEC 25 - ICMC 2014 (Enschede, the Netherlands)
Yusuke Sakakibara
Temperature log (duct shield No.2)

Plate 1: heated up
Plate 2: heated up
Cryocooler
Calibration

2014.7.10 ICEC 25 - ICMC 2014 (Enschede, the Netherlands)
Yusuke Sakakibara
Summary

• Summary
 – Duct shields were designed to satisfy KAGRA requirement of thermal radiation and scattered light
 – Thermal radiation through duct shield was measured
 • Result is consistent with calculation and satisfies KAGRA requirement although there is variance between duct shields

• Future work
 – Investigation of variance between duct shields
 • Similar measurements for remaining one duct shield will be conducted to check if the result is reproduced
 – Estimation of scattered light noise
Design of duct shield

- Vacuum duct and duct shield is fixed rigidly to the ground to reduce vibration, and, to reduce scattered light noise.

S. Koike
Heat load test

- Heat load is applied by three heaters on duct shield
- Heat input without heater is consistent with thermal radiation from SI ~10 W