Novel Critical Current Estimation Method for Internal-Mg-diffusion-processed MgB$_2$ Wires Based on Magnetic Microscopy

Kohei Higashikawa, M. Inoue, T. Kiss
(Kyushu University)
S. Ye, A. Matsumoto, H. Kumakura
(National Institute for Materials Science)
Y. Yang, G. Li, M. Sumption
(Ohio State University)
M. Rindfleisch, M. Tomsic
(Hyper Tech Research, Incorporated)

This work was partly supported by “Japan Science and Technology Agency (JST) as Advanced Low Carbon Technology Research and Development Program (ALCA)”
Background: Recent J_c of MgB$_2$ Wires

Recent performance improvement of MgB$_2$ wires by...

- internal Mg diffusion (IMD) process
- boron powder preprocessing (carbon coating, coronen...)

$J_c > 10^5$ A/cm2 @ 4 K, 10 T
Background: Recent J_e of MgB$_2$ Wires

Recent performance improvement of MgB$_2$ wires by...

- internal Mg diffusion (IMD) process
- boron powder preprocessing (carbon coating, coronene...)

$J_c > 10^5$ A/cm2 @ 4 K, 10 T

$J_e > 10^4$ A/cm2

Graphs:
1. J_e vs. B at 4.2 K, showing performance improvements with different processes.
2. Engineering J_e vs. Magnetic Field B, illustrating the magnetic field dependence of J_e.
Background: Estimation of I_c of MgB$_2$ Wires

Performance around 5 T or less should be evaluated for MgB$_2$ wires for promising applications such as MRI, cable, but…

Important region for practical applications

Four-probe method: difficult in measurement for very high I_c condition

General magnetization method: difficult in I_c estimation due to magnetic sheath: Iron, Monel

Monel sheath

OSU & Hyper Tech

Objective

Development of I_c Estimation Method for Recent High-performance MgB$_2$ Wires with Magnetic Sheath Materials

Method:
- Magnetic Microscopy & FEM analysis

Sample:
- AIMI mono-core wire with Monel sheath fabricated by Hyper Tech

Important region for practical applications
Scanning Hall-probe Microscope (SHPM)

External magnetic field: up to 5 T
Stage temperature: down to 5 K
Scanning area: 10 x 10 mm²
Scanning resolution: 0.5 x 0.5 x 0.25 μm³
Active area of Hall sensor: 50 x 50 μm²

Sample:
MgB₂ wire with
- mono core
- 0.55 mm in diameter
- Monel sheath

5 T magnet for the application of external magnetic field to the sample
Low-Temperature Scanning Hall-Probe Microscope (LT-SHPM)
Magnetic field distribution at low $B_{ex} @ 10$ K

1 mm

Hall-probe Scanning

Monel
Nb
MgB$_2$

0.2 mm

100 mT as a low magnetic field
Magnetic field distribution at low $B_{ex} @ 10$ K

1 mm

Hall-probe Scanning

Monel
Nb
MgB$_2$

Wire absorbs magnetic fluxes

Magnetic flux density B_z (T)
Position in width direction y (mm)

0.10
0.11
0.0 0.5 1.0 1.5
Magnetic flux density B_z (T)
Position in width direction y (mm)

100 mT

0.10
0.11
0.0 0.5 1.0 1.5
Magnetic flux density B_z (T)
Position in width direction y (mm)
Magnetic field distribution at high $B_{ex} @ 10$ K

Hall-probe Scanning

- Monel
- Nb
- MgB$_2$

400 mT as a high magnetic field
Magnetic field distribution at high B_{ex} @ 10 K

Hall-probe Scanning

Monel
Nb
MgB$_2$

Wire shields magnetic fluxes

Magnetic flux density B_z (T)
Position in width direction y (mm)

0.39
0.40
0.41
0.0 0.5 1.0 1.5

400 mT

0.39
0.40
0.41
0.0 0.5 0.5 1.0 1.5
What Governs the Electromagnetic Behavior

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

The Monel sheath absorbs fluxes due to its high permeability.

The MgB$_2$ filament shields fluxes after the saturation of the Monel.
Estimation of Permeability @ 40 K > T_c

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

Hall-probe Scanning

Magnetic flux density B_z (T)
Position in width direction y (mm)

- Monel
- Nb
- MgB$_2$

$dB / dH = \mu_0$
$dB / dH = \mu_r \mu_0$

0.09
0.10
0.11
0.12

$0.0 0.5 1.0 1.5$

0.09 0.10 0.11 0.12

0.0 0.5 1.0 1.5

SHPM

100 mT
Estimation of Permeability @ 40 K > T_c

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

Hall-probe Scanning

Comparison with FEM → find μ_r before saturation

$dB / dH = \mu_0$

$dB / dH = \mu_r \mu_0$

Monel
Nb
MgB$_2$

0.2 mm

100 mT

B

B_s

Magnetic flux density B_z (T)

Position in width direction y (mm)

SHPM
FEM

$\mu_r = 10$

0.090.100.110.12

0.0 0.5 1.0 1.5
Estimation of Field Saturation @ 40 K > \(T_c \)

Magnetic sheath:
- relative permeability (\(\mu_r \))
- saturation flux density (\(B_s \))

Superconducting filament:
- critical current (\(I_c \))

\[
\frac{dB}{dH} = \mu_0
\]
\[
\frac{dB}{dH} = \mu_r \mu_0
\]

\(B \)

Monel
Nb
\(\text{MgB}_2 \)

0.2 mm

600 mT

Hall-probe Scanning

\[B \]

\[dB / dH = \mu_0 \]

\[dB / dH = \mu_r \mu_0 \]

\[H \]

Magnetic flux density \(B_z (T) \)

Position in width direction \(y \) (mm)

\(\mu_r = 10 \)

SHPM

\[0.59 \quad 0.60 \quad 0.61 \quad 0.62 \]

\[0.0 \quad 0.5 \quad 1.0 \quad 1.5 \]

K. Higashikawa et al., ICEC 25 - ICMC 2014
Estimation of Field Saturation @ 40 K > T_c

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

Hall-probe Scanning

Comparison with FEM → find B_s after saturation

Monel
Nb
MgB$_2$

$\frac{dB}{dH} = \mu_0$

$\frac{dB}{dH} = \mu_r \mu_0$

$B = B_s$

$dB/dH = \mu_0$

$dB/dH = \mu_r \mu_0$

$B_s = 320 \text{ mT}$

$\mu_r = 10$

$B = 600 \text{ mT}$

$\mu_r = 10$

$B_s = 320 \text{ mT}$

Comparison with FEM → find B_s after saturation

Hall-probe Scanning
Estimation of I_c @ 5 K, Remanent

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

Hall-probe Scanning

Magnetic flux density

B

$dB / dH = \mu_0$

$dB / dH = \mu_r \mu_0$

B_s

H

Relative permeability (μ_r) = 10

Saturation flux density (B_s) = 320 mT

0.2 mm

SHPM

Monel
Nb
MgB$_2$

remanent

$B_0 (T)$

Magnetic flux density

$B_z (T)$

Position in width direction y (mm)

K. Higashikawa et al., ICEC 25 - ICMC 2014
Estimation of $I_c @ 5$ K, Remanent

Magnetic sheath:
- relative permeability (μ_r)
- saturation flux density (B_s)

Superconducting filament:
- critical current (I_c)

Comparison with FEM → I_c was finally estimated!!

Hall-probe Scanning

Monel
Nb
MgB$_2$

0.2 mm

remanent

B

B_s

$dB / dH = \mu_0$

$dB / dH = \mu_r \mu_0$

H

$\mu_r = 10$

$B_s = 320$ mT

$I_c = 500$ A
Two-dimensional Mapping @ 5 K

Measured magnetic field on the plane

\[B_z \text{ (mT)} \]

-6.0 \quad 46.5

1 mm
Longitudinal I_c variation can be estimated by this method.
Success in I_c Characterization in High I_c Condition

- difficult for four-probe method due to heat generation, system limitation
- difficult for general magnetic method due to magnetic sheath material

J_e (A/cm2) vs. B (T)

$I_c = 600$ A
$I_c = 500$ A

Important properties for possible applications (MRI, SMES, cable,…)

Summary

We have developed a noncontact I_c characterization method for recent high-performance MgB$_2$ wires with magnetic sheath

1. I_c value was successfully estimated for high I_c condition (below 5 T) where four-probe method could not be applied

2. Noncontact I_c characterization was achieved whereas general magnetic method was not successful because of magnetic sheath material

3. Longitudinal variation of I_c was estimated

Attractive characterization method for taking data for application design and for the optimization of wire fabrication processes

Thank you very much for your kind attention!