Axions are hypothetical particles that presumably solve the strong CP problem in the standard model of physics.

- Axions are amongst the most promising dark matter candidates in modern cosmology.
- " Invisible" particles, but convert to and from photons in the presence of a strong magnetic field.
- Two possible angular alignments for the telescopes: "area dominated" or "field dominated" arrangement.

- Lay-out optimization favors the "area dominated" alignment.

The main design parameters of the IAXO superconducting toroidal magnet are as follows:

- **Electrical circuit and quench protection**
 - Adiabatic temperature rise due to a uniform quench spread is ~100 K
 - Based on an active system and an internal dump of the stored energy
 - Two dump modes
 - High-T, current leads
 - Flexible superconducting cables
 - Each coil is equipped with multiple quench heaters
 - Quench detection relies on an optical growth across the magnet

- **Cryogenics**
 - Concept
 - Cold mass cooled to 4.5 K via conduction
 - Total load is 150 W at 4.5 K and 1.6 kW at 80-80 K
 - Based on cooling with a forced flow of sub-cooled liquid helium at supercritical pressure, to avoid two-phase flow
 - Coolant lines in a piping system attached to the coil casings, allowing for conduction cooling
 - Total heat load is 150 W at 4.5 K and 1.6 kW at 80-80 K

- **Operation scheme**
 - Helium compression and gas managed at ground station.
 - Refrigerator cold box, current leads and a 4.5 K helium bath mounted on the rotating disk
 - 4.2 K helium bath connected to the magnet cryostat
 - New design for the IAXO toroidal superconducting magnet features an increase of the detection potential of the apparatus

- **Cryogenics**
 - Operation scheme
 - Helium compression and gas managed at ground station.
 - Refrigerator cold box, current leads and a 4.5 K helium bath mounted on the rotating disk
 - 4.2 K helium bath connected to the magnet cryostat
 - New design for the IAXO toroidal superconducting magnet to increase the sensitivity to axion-photon coupling by 1 order of magnitude, with respect to the current state-of-the-art