

The Business of Science®

Developing Nb₃Sn and Bi-2212 conductors for high field magnet applications

M. Gerace, M.B. Field, Y. Huang, S. Hong, H. Miao, Y. Zhang, and J.A. Parrell

Oxford Superconducting Technology, Carteret, NJ 07008 USA

July 8, 2014

Developing Nb₃Sn and Bi-2212 conductors for high field magnet applications

Acknowledgements

- U.S. DOE High Energy Physics
- European Organization for Nuclear Research (CERN)
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- F4E Fusion For Energy (EU ITER)
- U.S. ITER Project Office Oak Ridge National Laboratory
- Lawrence Berkeley National Laboratory
- Fermi National Accelerator Laboratory
- Brookhaven National Laboratory
- ASC Florida State University / NHMFL
- Thank you for your continued support

Developing Nb₃Sn and Bi-2212 conductors for high field magnet applications

The Business of Science®

Outline

- Nb₃Sn
 - Proven, consistent, industrial process
 - Flexible process allows for tailored conductor designs for specific applications
 - Wide range of ${\rm I_c}$ and hysteresis loss properties are possible
 - Ongoing R&D to reduce the effective filament diameter
- Bi-2212
 - Unique material for high field applications
 - Performance improvements
 - Development horizon

Conclusions

Internal Tin Process Flow

Internal Tin process is proven & reproducible

- Consistent properties during >60 tons of ITER production
- RRP[®] volume growing as the range of applications has grown

Internal Tin is a flexible process

in Amps

0.8mm I_c (12T, 4.2K) in A Increasing magnetic field strength

- Distributed barrier RRP[®] designs for highest field applications
 - highest possible critical current
 - D_{eff} can be adjusted for specific applications
- Single barrier designs for stable low field applications
 - No flux jumping
 - Minimum hysteresis losses

^{0.8}mm Non-Copper Magnetization Hysteresis Loss (mJ/cm³) Faster Ramping Magnets Decreasing Flux Jumps

Reducing the effective filament diameter

OXFORD INSTRUMENTS

The Business of Science®

 RRR reduced by tin reacting through the diffusion barrier

Beyond Nb₃Sn: Bi-2212 wire

The Business of Science®

- Unique material for high field magnet application
 - Round wire with isotropic properties
 - High current under high field (> 18 T)
 - Easily twisted and cabled
 - No J_E degradation
 - Significant reduction in hysteresis losses

Provided by: Xifeng Lu, NIST/CU/ACT

Bi-2212 round wire J_E improvement

The Business of Science®

 Critical current density is determined by the filament density

Pictures courtesy of ASC/FSU

Bi-2212 wire: application ready

- Unique material for high field magnet application
 - Robust conductor resistant to damage from magnet quenching (Oxford Instruments experience shows >110 quench cycles)
 - Coils can be made using technology developed for Nb₃Sn
 - Ready for volume production using conventional wire drawing techniques and equipment

Bi-2212 round wire development horizon

Property of	Delivered value	In 2 years	In 5 years
importance	today		
Practical temp. range	4.2-20 K	4.2-20 K	4.2-20 К
Field range	20 -50 T	20 -50 T	20 -50 T
Conductor current density	J _e ~500 A/mm2 at 4.2 K 20 T	J _e ~700 A/mm2 at 4.2 K 20 T	J _E ~700 A/mm2 at 4.2 K 45 T
Conductor form and dimensional range	Round, > 0.5mm	Round, > 0.5mm	Round, > 0.5mm
Conductor length	200-1000 m	400-2000 m	> 3000 m
Conductor strength	110 MPa	150-200 MPa	> 200 MPa
Delivered selling price range \$/kA.m, @4.2K&20T	330-550	200-400	100-150

- Performance gains from
 - Further densification
 - Improved powder properties
- Cost reduction simply from
 - Improved performance
 - Volume scale up

Conclusions

- Nb₃Sn via the proven internal tin process can be engineered to meet a wide range of applications
 - Continuous progress in reducing $\mathsf{D}_{\mathsf{eff}}$ while keeping J_{c} and RRR high
- Bi-2212 is a unique high field conductor
 - Round wire
 - Practical applications are now possible due to critical current gains realized through densification

The Business of Science®

THANK YOU