Estimate of the Strong and Uniform Magnetic Field Generated by Face-to-Face HTS Bulk Magnet System T. Oka^{a,}, E.Hirayama^a, Y. Takahashi^a, T. Kanai^a, J. Ogawa^a, S. Fukui^a, T. Sato^a, K. Yokoyama^b, T. Nakamura^c

Background

The HTS bulk magnets exhibit quite peculiar distributions of the trapped magnetic fields (Oka et al. (2000)). Nakamura et al. (2007) succeeded in detecting the NMR signals in the bore of the piled-up bulk magnets for the first time in the world. Ogawa et al. (2011) showed us the MRI picture of an embryo of a mouse with use of the same system. To expand the practical application areas of bulk magnets, we aim to estimate the uniformity of magnetic field in the gap between the face-to-face magnetic (Oka et al. (2014)). In this paper, the bulk magnets were activated by the pulsed field (PFM). The performances of the uniformity are discussed from the view point for the compact NMR devices which have been never realized in the past.

Experimental

Magnetic poles (N, S) GM cooler GM cooler

Pump[´]controller 📈 Temperature controller Compressors (in the body)

- Gd123 bulk magnets manufactured by Nippon Steel Co. and Dowa Mining Co.
- 60 mm in diameter and 15 mm in thickness
- The PFM less than 7 T were applied by IMRA method (Oka (2007))
- The bulk magnets emitted 1.8 T (N) and 1.4 T (S) at each pole surface
- The gap is settled less than 70 mm

25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014, Thu-Mo-Session 3.5-M-06, 124

^aNiigata University, 8050 Ikarashi-Ninocho, Nishi-Ward, Niigata 950-2181, Japan ^bAshikaga Institute of Technology, 268-1 Omae-cho, Ashikaga 326-8558, Japan ^cRIKEN, 2-1 Hirosawa, Wako 351-0198, Japan

Concave and Conical

Conclusion

- were coupled together with use of an iron plate on the pole surface

- The distributions must be improved when we adjust the peaks more precisely.

References

- magnetic field demanding devices. Physica C 335, 101–106.
- (Magnetic Resonance Engineering) 31B(2), 65-70.
- high *T*c bulk superconducting magnet. Applied Physics Letters 98, 234101-1–234101-3.
- Transactions on Applied Superconductivity 24 doi:10.1109/TASC.2013.2284859.
- Oka T., 2007. Processing and applications of bulk HTSC. Physica C 463–465 7–13.

• The iron plate is only on the left-hand side

• The concave and conical shapes were precisely

z=0 (Left surface) $20 \times 20 \times 20$ mm

- coupled between the gaps of 30 70 mm • The profile in every gap has a minimum point
- spectively
- The most uniform distribution of 358 ppm of 1.11 T 9 mm in the 30 mm gap
- The performance exceeded the level of 1,500 ppm, which would enable us to observe the NMR signals

• The uniformity of the magnetic field was improved when the concave and conical magnetic field distributions

• The most uniform distribution was 358 ppm of 1.11 T for *B* at 9 mm distant from the magnetic pole

• The minimum values lies in the valleys in the regions from 9 to 13 mm distant from the pole surface.

• Nakamura T., Itoh Y., Yoshikawa M., Oka T., Uzawa J., 2007. Development of a Superconducting Magnet for Nuclear Magnetic Resonance Using Bulk High-Temperature Superconducting Materials. Concepts in Magnetic Resonance Part B

• Ogawa K., Nakamura T., Terada Y., Kose K., Haishi T., 2011. Development of a magnetic resonance microscope using a

• Oka T., Hirayama E., Kanai T., Ogawa J., Fukui S., Sato T., Yokoyama K., Nakamura T., 2014. Strong Magnetic Field Generators Containing HTS Bulk magnets and Compact Refrigerators and Their Field-Trapping Performances. IEEE

[•] Oka T., Yokoyama K., Itoh Y., Yanagi Y., Yoshikawa M., Ikuta H., Mizutani U., 2000. Construction of a 2–5 T class superconducting magnetic field generator with use of an Sm123 bulk superconductor and its application to high