ICEC25-ICMC2014 July 9, 2014 U. of Twente, Enschede

5T class superconducting bulk magnet using MgB₂ bulk doped with Ti

Faculty of Engineering, Iwate University T. Naito, T. Yoshida, and H. Fujishiro

Introduction (our works)

Development of MgB₂ superconducting bulk magnets. (Quasi-permanent magnet)

Tesla-class MgB₂ bulk magnets has been successfully obtained ! \rightarrow To get higher B_{T} , the pinning force must be enhanced.

Grain refining

Grain boundaries (GBs) are flux pinning centers, So their refining is expected to enhance the pinning force.

Hot pressed MgB₂ bulks using ball-milled powder were studied.

 $B_{\rm T}$ =5.4 T@12 K was achieved.

Ti-doping

Impurity doping is an usual method to introduce pinning centers. Ti and C are well known to be effective dopants.

Zhao et al., APL 79 (2001) 1154; 80 (2002) 1640

(a) 20 nm Mg GB (b) Ti Grain E(keV) MgB₂

• Ti10% maximizes $J_{\rm c}$.

- TiB₂ layer at GB act as pinning center.
- Ti-doping fines down MgB₂ grains.
 →densification

Objective

Literatures revealed that Ti-doping is quite effective for the enhancement of J_c in magnetic fields and for the grain refining.

We examine an effect of Ti-doping on the trapped field and vortex pinning properties of MgB₂ bulks.

MgB₂ bulk preparation

in-situ HIP (<u>Hot Isostatic Pressing</u>) method

- Nominal composition : <u>(Mg_{1-x}Ti_x)B₂ (x=0.05, 0.1, 0.2)</u>.
- Precursor pellet was sealed in SS container in vacuum.
- in-situ method: sintered at 900°C for 3h under 98 MPa.

Bulks	Diameter (mm)	thickness (mm)
HIP-Ti 5%	36	7
HIP-Ti 10%	36	7
HIP-Ti 20%	36	7
HIP-pristine	38	7

Schematic image of HIP machine (from KOBELCO's HP)

Measurements

- Trapped Field: Field cooled magnetization (FCM)
- Critical current density: Magnetic hysteresis loop by SQUID magnetometer and Bean's model
- Phase evaluation : Powder X-ray diffraction
- Micro structure: EPMA, SEM

Ti-doping effect on $B_{\rm T}$

•Ti-doping enhances B_T by 1.3 times. (2.7 T→3.6 T@13.4 K)
•B_T is not sensitive to the Ti contents.

Stacked bulk

To eliminate the demagnetization effect,

We measure the $B_{\rm T}$ of the stacked bulk which consists of Ti 5% and 10% bulks.

Critical current density

- Impurity phases of Ti and TiB₂ are observed in Ti-doped bulks.
- Their intensity increases with Ti-doping.

SEM Images

White regions (maybe Ti eduction) obviously increase with Ti-doping, which is consistent with XRD results.

Characteristic x-ray image

• Size of Ti eduction is approximately 10 μ m order. • B exists around Ti \rightarrow TiB₂(?) acts as a pinning center. ¹³

Summary

To obtain a higher trapped magnetic field of MgB₂ bulk, we examined an effect of the Ti-doping.

Ti-doping enhanced the critical current density(J_c) and the trapped field(B_T).

- $B_{\rm T}$ of Ti-doped bulks are 1.3 times larger than that of the pristine bulk.
- The highest B_T at the center of the stacked bulk was <u>4.6 T</u>, which is 1.3 times larger than that of the single bulk.
- *B*_{irr} at 20K of Ti-doped bulks exceeds 5 T.
- Macroscopic behaviors are not sensitive to the amount of Ti

Further studies are needed !

Microscopic analysis

- Ti and/or Ti compounds increases with Ti-doping.
- B was concentrated around Ti \rightarrow TiB₂ acts as a pinning center, which enhances J_c and B_T .

Acknowledgements:

Hidekazu Teshima (Dr.) of Nippon Steel & Sumitomo Metal Co. for his supports to fabricate the HIPed MgB₂ bulks.

This work was in part supported by

- A-STEP (AS242Z02673L) from JST
- Hitachi Metals Materials Science Foundation
- KAKENHI (23560002) from JSPS

Why MgB₂?

Advantages of MgB₂ bulk for application

Light weight

 \rightarrow MAGLEV train (energy save),

Wind power generator (supporting material save)

Weak-link free (due to long coherence length)

 \rightarrow polycrystalline bulk is applicable

 \rightarrow homogeneous, easily enlargement

- •Relatively high $T_{\rm c}$ (~39 K) \rightarrow cryo-cooler cooling
- High yield stress \rightarrow reinforcement-free
 - \star 2~3 times larger than REBCO bulk

A. Murakami@lchinoseki National College of Technology, (Private communication)

Reports on MgB₂ bulk magnet

(Spark Plasma Sintered bulk)

(High pressure (2GPa) sintered bulk)

18

•••Recently,

MgB₂ bulk magnets come into the spotlight again.

Many presentation are found in this conference !