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Outline 

• 2212 – a multifilamentary HTS round wire with 20-50 T 

reach at 4.2-15 K 

– 30 T NMR and 20 T dipoles for FCC magnets  

– Overpressure Processing – 20 T (4.2 K) JE exceeds 700 

A/mm2 

• With MQE > 0.1 J and NZPV in several cm/s, neither 

quench protection nor detection will be easy. 

– First careful measurement of Tmax v.s. Vnz. 

– Measurement of characteristic time for quench detection 

and quench protection heaters 

– Measurement of quench degradation limits 
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A race we can’t lose: fast temperature rise v.s. detection + protection 
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MIITs calculation:  
Temperature to 300 K within 1 sec if J>400 A/mm2 

2212 

𝑽 𝒕 = 𝑰 𝒕 ⋅ 𝑹𝑵𝒁 𝒕 = 𝑰(𝒕) ⋅  𝝆 𝒛 𝑨𝒎 ∙ 𝒅𝒛
(𝑳𝟎+𝑵𝒁𝑷𝑽∙𝒕)

−(𝑳𝟎+𝑵𝒁𝑷𝑽∙𝒕)

 

VNZ(t)=I(t) x RNZ(t) 
          =I(t) x VNZPV x t x ρ(TNZ)/Sm  
          = Jm x ρ(TNZ) x NZPV x t 

If the initial normal zone (2xL0) is small 

For VNZ to reach 0.1 V,  2212 (HTS) may need >1 s, with temp 
rise>100 K. 

VNZ(t) 



Tool No. I: Experimentally study quench behaviors of small-scale 
coils and short-samples in background magnetic fields 
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Tool II: The power of computation – 1D adiabatic simulation of 
quenches 

• Solve 1D heat balance equation 
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• At a given field, Jc is linear with T. 

• Huge Hirr(T) when T<20 K. 

– 2212 at zero field has small NZPV, 
but how about at large fields? 

– Hirr(T) is far from being unanimously 
defined. 
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T(x) solved by COMSOL  
for 1.2 mm wire, Qint=0.18 J 

4.2 K, 7 T, Io=200 A  
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Larbalestier et al, Nature Mateirals, 2014 



The coil is very stable – MQE exceeds 0.1 J at 4.2 K and 7 T 
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• MQE of Bi-2212 exceeds 0.1 J (experiment) and 0.01 J 
(simulation) 
– Energy produced by conductor motion and epoxy cracking: <1 mJ 

• But Bi2212 coils are not quench-free: coils degraded by 
quenches (800 kJ SMES coil from 2212 tapes, Tixador et al.) 

Point disturbances in 

epoxy-impregnated SC 

magnets 
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Propagation is slow – longitudinal speed smaller than 15 cm/s at 
80% Ic at 7 T  

𝛼=1.61x10-2 mm3 s-1 A-1. 
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• Experimental: NZPV linear with Jm. 

• Simulation: NZPV goes up with Jm
2, exceeding 50 

cm/s at 60% Ic at 7 T. 
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4.2 K, 7 T, coil experiment 



 
 
Temperature and voltage growths during recovery: what voltage 
should be used for reliable quench detection? 

Coil terminal voltage during 

recovery cases 
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Temperature and voltage growths during quenches : Tmax vs. Vdetection 
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• At a given Vd, hot spot temperature 
rises with Io. 

– At Io=400 A, Tmax=79 K for Vd to 
reach 0.1 V 

• T(Vdetection=1.0 V) - T(Vdetection=1.0 V) 
increased with Io. 

–  40 K for Io=400 A vs. 25 K for Io=100 A  

 

 

 

Temperatures derived from voltages 
across the 1.5 cm hot zone: 
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The staggering hot zone and difficult quench protection at high Io  
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T=4.2 K, B=7 T, Io=100 A 
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• For Io=400 A, hot zone length – 7-14 cm when Vd=0.1 V.  
– Only 1-D propagation contributes till Vd=0.1 V. 

 

 

 

 

 

4.2 K, 7 T, coil experiment 



Characteristic time for quench detection and quench protection 
heaters 
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• With UNZ(t)=Jm x ρ(TNZ) x NZPV x td 

– td (time elapsed from current sharing to Vd=0.1 V) 

should decrease with Io. 

• Easier detection needs larger td  

– td proportional to MQE. 
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What is 2212’s quench degradation limit?  
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See Liyang Ye talk at 2014ASC: 1MOr3A-04 

G10 at 4.2 K 
Cu 

Ag/2212 Hot zone + TC 
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• Depends on conductor architecture, 
processing, and strain state. 

• 500 K for this setup, perhaps limited by 
compressive strain damages. 

 

 

 

 

Irreversible and reversible 
degradation behaviors shown 

4.2 K, self field,  
short-sample  
experiment 
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Concluding remarks 

Experimentally determined quench behaviors of 2212 
wires and coils in magnetic fields and cross-examined 
with numerical simulations 

At 4.2 K and 7 T, MQE > 0.1 J and NZPV < 15 cm/s. 
 

 

 

 

 

First careful measurements of Tmax v.s. Vnz 
Vnz < 0.1 V till Tmax reaches 80 K for Io > 400 A at 7 T 
Highlighting the difficulty with quench detection of 2212 (HTS) magnets 

 

td and its dependence on Io and heater design. 
 
Quench limit - ~500 K limited by compressive strains.  

 
 

 
 
 


