Fermilab

Operated by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Quench behavior and protection of high-field Bi₂Sr₂CaCu₂O_x magnets at 4.2 K

Tengming Shen¹, Liyang Ye^{1,2}, and Daniele Turrioni¹ 1. Fermilab, 2. North Carolina State University 2014 International Cryogenic Materials Conference Enschede, the Netherlands, 08 July 2014

Work supported by the U.S. Department of Energy, Office of High Energy Physics

Outline

- 2212 a multifilamentary HTS round wire with 20-50 T reach at 4.2-15 K
 - 30 T NMR and 20 T dipoles for FCC magnets
 - Overpressure Processing 20 T (4.2 K) J_E exceeds 700 A/mm²
- With MQE > 0.1 J and NZPV in several cm/s, neither quench protection nor detection will be easy.
 - First careful measurement of T_{max} v.s. V_{nz} .
 - Measurement of characteristic time for quench detection and quench protection heaters
 - Measurement of quench degradation limits

A race we can't lose: fast temperature rise v.s. detection + protection

For V_{NZ} to reach 0.1 V, 2212 (HTS) may need >1 s, with temp rise>100 K.

3

= $I(t) \times V_{NZPV} \times t \times \rho(T_{NZ})/S_m$

 $= J_m \times \rho(T_{NZ}) \times NZPV \times t$

Time [Sec]

Tool No. I: Experimentally study quench behaviors of small-scale coils and short-samples in background magnetic fields

6-layer, 32 m Ag/Bi-2212 wire, 244.5 turns, ID=33.40 mm, OD=48.1 mm; Length=57.80 mm

4

Tool II: The power of computation – 1D adiabatic simulation of quenches

Solve 1D heat balance equation

 $C\frac{dT}{dt} = \frac{d}{dx}\left(k\frac{dT}{dx}\right) + \rho J^2 + Q_{int}$

- At a given field, J_c is linear with T.
- Huge H_{irr}(T) when T<20 K.
 - 2212 at zero field has small NZPV, but how about at large fields?
 - H_{irr}(T) is far from being unanimously defined.

5

The coil is very stable – MQE exceeds 0.1 J at 4.2 K and 7 T

- MQE of Bi-2212 exceeds 0.1 J (experiment) and 0.01 J (simulation)
 - Energy produced by conductor motion and epoxy cracking: <1 mJ
- But Bi2212 coils are not quench-free: coils degraded by quenches (800 kJ SMES coil from 2212 tapes, Tixador et al.)

Propagation is slow – longitudinal speed smaller than 15 cm/s at 80% $\rm I_c$ at 7 T

- Experimental: NZPV linear with J_m.
- Simulation: NZPV goes up with J_m^2 , exceeding 50 cm/s at 60% I_c at 7 T.

Temperature and voltage growths during recovery: what voltage should be used for reliable quench detection?

Quench detection voltage: how high should it be to not false trigger protection?

Temperature and voltage growths during quenches : T_{max} vs. V_{detection}

Hot spot temperature v.s. resistivity voltage across normal zone: voltage->temperature results

Temperatures derived from voltages across the 1.5 cm hot zone:

- At a given V_d, hot spot temperature rises with I_o.
 - At I_o =400 A, T_{max} =79 K for V_d to reach 0.1 V
- T(V_{detection}=1.0 V) T(V_{detection}=1.0 V) increased with I_o.
 - 40 K for I_0 =400 A vs. 25 K for I_0 =100 A

4.2 K, 7 T, coil experiment

The staggering hot zone and difficult quench protection at high I_o

- For I_0 =400 A, hot zone length 7-14 cm when V_d =0.1 V.
 - Only 1-D propagation contributes till V_d=0.1 V.

Characteristic time for quench detection and quench protection heaters

- With $U_{NZ}(t)=J_m \times \rho(T_{NZ}) \times NZPV \times t_d$
 - t_d (time elapsed from current sharing to V_d=0.1 V)
 should decrease with I_o.
- Easier detection needs larger t_d
 - t_d proportional to MQE.

What is 2212's quench degradation limit?

13

Concluding remarks

Experimentally determined quench behaviors of 2212 wires and coils in magnetic fields and cross-examined with numerical simulations

At 4.2 K and 7 T, MQE > 0.1 J and NZPV < 15 cm/s.</p>

- First careful measurements of T_{max} v.s. V_{nz}
 V_{nz} < 0.1 V till T_{max} reaches 80 K for I_o > 400 A at 7 T
 Highlighting the difficulty with quench detection of 2212 (HTS) magnets
- t_d and its dependence on I_o and heater design.
- Quench limit ~500 K limited by compressive strains.