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Motivation 
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1. Liquid cryogen cooling has been the norm for superconducting bus-bar/cables 
2. Localised  disturbances do not pose a quench risk due to high heat transfer coefficient 
3. Gas cooled cables/bus-bars are now seriously considered to take advantage of the 

wide temperature range found in HTS and MgB2 

4. Heat transfer coefficient by gas cooling is much lower, local disturbance induced 
quench becomes a risk. 

Novel twisted-pair cable concept optimized for tape conductors (MgB2, Y-123 and Bi-

2223). A.  Ballarino “ Alternative design concepts for multi-circuit HTS link systems”. IEEE Trans. 
on Applied Supercond. 21 pp. 980-984, 2011 



How to Determine Adiabatic MQE (1) 
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Embedded in the intrinsic instability of the quench equation 

𝑐𝑝 𝑇(𝑥, 𝑡)
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑥
𝑘(𝑇(𝑥, 𝑇))

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
+ 𝐽 ⋅ 𝐸 𝑇(𝑥, 𝑡), 𝐽  

     with 𝑇 𝑥, 0 = 𝑇0 and 𝑇 𝑥 → ±∞, 𝑡 = 𝑇0 

MQE can be determined by  

 Numerical solutions: simple to implement but could be exhaustive 

 Analytical approach: more difficult but lead to deeper insight 

The heat generation of current sharing 𝐽 ⋅ 𝐸 𝑇, 𝐽  is fundamental to the 

magnitudes and functional behaviour of MQE. 

 

 

 

 



How to Determine Adiabatic MQE (2) 
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Methodology for Analytical MQE (following Dresner and Wilson) 

1. Partial linearization: 𝑘 𝑇 𝑥, 𝑇 = 𝑘 𝑇0 , 𝑐𝑝 𝑇 𝑥, 𝑡 = 𝑐𝑝(𝑇0) 

2. Dimensionless transform 

 
𝜕𝑢

𝜕𝜏
=
𝜕2𝑢

𝜕𝜉2
+

𝜋

2

2 𝐸 𝑢,𝑗

(1−𝑗) 𝜌𝑚𝐽𝐶 𝑇0
 with 𝑢 𝜉, 0 = 0, 𝑢 𝜉 → ±∞, 𝜏 = 0 

 Current: 𝑗 =
𝐽

𝐽𝑐 𝑇0
 

 Length: 𝜉 =
𝑥

𝑙𝑀𝑃𝑍
 with 𝑙𝑀𝑃𝑍 =

𝜋

2

𝑘 𝑇0 𝑇𝐶−𝑇0

𝜌𝑚(𝑇𝐶)𝑗 𝐽𝐶
2 𝑇0

 

 Time: 𝜏 =
𝑘0 𝑡

𝑐𝑝(𝑇0)𝑙𝑀𝑃𝑍
2  

 Temperature: 𝑢 =
𝜃

1−𝑗
 with 𝜃 =

𝑇−𝑇0 

𝑇𝑐−𝑇0
 

3. Parameters reduced to just two dimensionless ones 

 Current load factor j 

 Current sharing voltage: 𝜖 𝑗 =
𝐸 𝑢,𝑗

1−𝑗 𝜌𝑚(𝑇𝑐)𝐽𝐶 𝑇0
 

 

 

 



How to Determine Adiabatic MQE (3) 
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Methodology for Analytical MQE (following Dresner and Wilson) 

4. Dimensionless quench equation remains partial differential 

 more informative but not easier.  

5. Dresner obtained MQE by finding the minimum enthalpy of a normal zone of 

an assumed spatial profile of the normal zone.  

 The method not easily applied to nonlinear current sharing of the power-law 
superconductors. 

6. Wilson suggested that the MQE is given by the stationary normal zone 

equation: 
𝜕2𝑢

𝜕𝜉2
+

𝜋

2

2 𝐸 𝑢,𝑗

(1−𝑗) 𝜌𝑛𝐽𝐶 𝑇0
= 0, 𝑢 0 = 𝑢0, 𝑢 𝐿 = 0 

 The problem becomes analytically manageable. 

 Results are consistent with Dresner. 

 No analytical proof yet for the underlying lemma. 



How to Determine Adiabatic MQE (4) 

Minimum Quench Energy of Power-law Superconductors  6 

MQE from stationary normal zone:  

𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2 𝐸 𝑢, 𝑗

(1 − 𝑗) 𝜌𝑚𝐽𝐶 𝑇0
= 0, 𝑢 0 = 𝑢0, 𝑢 𝐿 = 0 

 Solution of the ordinary differential equation  
 Minimizing the thermal energy (enthalpy) of the normal 

zone (the area below 𝑢 𝜉 ): 

𝜂 𝑢0, 𝑗, 𝜌𝑚𝐽𝐶 𝑇0 , … = 2 𝑢 𝜉, 𝑗, 𝜌𝑚𝐽𝐶 𝑇0 , … 𝑑𝜉
𝐿(𝑢0)

0

 

 The existence of a minimum enthalpy 𝜂min is self evident:  
 Normal zone length 𝐿(𝑢0) reduces at higher 𝑢0. 
 𝜂 𝑢0 → ∞ at high and low temperatures, i.e., at  
(𝑢0 → ∞) and 𝐿 𝑢0 → 1 → ∞ respectively. 

 The dimensionless MQE 𝜂MQE = 𝜂min (Wilson) 

 Dimensioned MQE from dimensionless 𝜂𝑀𝑄𝐸: 

𝑀𝑄𝐸 𝑗 = 𝜂𝑀𝑄𝐸 𝑗 ⋅ 𝑐𝑝 𝑇0 𝑙𝑀𝑃𝑍 1 − 𝑗 𝑇𝐶 − 𝑇0  

=
𝜋

2
𝑐𝑝 𝑇0 𝑇𝐶 − 𝑇0

𝑘 𝑇0 𝑇𝐶 − 𝑇0

𝜌𝑚 𝑇𝐶  𝐽𝐶
2 𝑇0

𝜂𝑀𝑄𝐸 𝑗 1 − 𝑗 𝑗
−0.5 

 
 

𝑢 

𝜉 𝐿(𝑢0)  

𝑢0 

1 

𝐿𝐶𝑆(𝑢0)  𝜂 𝑢0  

𝑢0 
𝜂min 



The Unique and Profound Case of 
Critical State with Linear Jc(T) 
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𝐽𝐶 𝑇 = 𝐽𝐶 𝑇0 ⋅
𝑇𝐶 − 𝑇

𝑇𝐶 − 𝑇0
 

           = 𝐽𝐶 𝑇0 1 − 𝜃  
           = 𝐽𝐶 𝑇0 1 − 1 − 𝑗 𝑢  

𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

𝑢 − 1 = 0 
𝐸 𝑇, 𝐽 = 𝜌𝑚 𝐽 − 𝐽𝐶 𝑇  
= 𝜌𝑚𝐽𝐶 𝑇0 (1 − 𝑗)(𝑢 − 1) 
 

𝜖 𝑢, 𝑗 = (𝑢 − 1) 

Linear JC(T)  dependence     +   Critical State Current Sharing   → A simple yet profound 
normal zone equation  

All parameters eliminated: 
The non-dimensional normal 
zone and minimum enthalpy 
independent of 𝑗, 𝐽𝑐 , 𝜌𝑚 
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MPZ is well defined with the current 
sharing length 𝐿𝐶𝑆 = 1 and 𝑢(𝐿𝐶𝑆) = 1.   



The Unique and Profound Case of 
Critical State with Linear Jc(T) 
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𝐽𝐶 𝑇 = 𝐽𝐶 𝑇0 ⋅
𝑇𝐶 − 𝑇

𝑇𝐶 − 𝑇0
 

           = 𝐽𝐶 𝑇0 1 − 𝜃  
           = 𝐽𝐶 𝑇0 1 − 1 − 𝑗 𝑢  

𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

𝑢 − 1 = 0 
𝐸 𝑇, 𝐽 = 𝜌𝑚 𝐽 − 𝐽𝐶 𝑇  
= 𝜌𝑚𝐽𝐶 𝑇0 (1 − 𝑗)(𝑢 − 1) 
 

𝜖 𝑢, 𝑗 = (𝑢 − 1) 

Linear JC(T)  dependence     +   Critical State Current Sharing   → A simple yet profound 
normal zone equation  

All parameters eliminated: 
The non-dimensional normal 
zone and minimum enthalpy 
independent of 𝑗, 𝐽𝑐 , 𝜌𝑚 
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u
2d

MQE
=2.84

u
3d

MQE
=4.5


(u

0
)

u
0

u
1d

MQE
=1+1/

MPZ is well defined with the current 
sharing length 𝐿𝐶𝑆 = 1 and 𝑢(𝐿𝐶𝑆) = 1.   

The critical state with linear Jc(T) 
has 𝜂MQE = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

and 𝑀𝑄𝐸 ∝ 1 − 𝑗 𝑗−0.5 



Experimental MQE do not vanish with (1-j) 

Minimum Quench Energy of Power-law Superconductors  8 

 High current 𝑗 > 0.9 is more sensitive for 
ascertaining the current scaling of MQE. 

 Although MQE measurements at high 
current are difficult, data do exist and 
show clearly the experimental MQE 
deviates from the critical state: 
o Most notably a slower reduction at 

high current load j>0.9; 
o In both LTS and HTS; 
o 1d: Rutherford cable (L Shirshov) 
o 2d: MgB2 pancake (J Pelegrin) 
o 3d: NbTi (Dresner and Scott) and 

2212 (Y Yang) solenoids 
 

 
  

 
 

Critical state MQE vanishes with 1 − 𝑗 



MQE of Power-law Superconductors 
An example of the methodology 
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(1 − 1 − 𝑗 𝑢)
𝐸 𝑢, 𝑗)

𝐸0

1
𝑛

+
𝐸(𝑢, 𝑗)

𝐽𝐶 𝑇0 𝜌𝑚
= 𝑗 

𝜖 𝑢, 𝑗, 𝑛 =
𝐸(𝑗, 𝑢)

(1 − 𝑗)𝐽𝐶 𝑇0 𝜌𝑚
 

=
1

1 − 𝑗 𝑒𝜌

𝐸(𝑢, 𝑗)

𝐸0
 

 Nonlinear current sharing 𝜖 𝑢, 𝑗 : 

𝐸 𝑢, 𝑗

𝐸0
~𝑒𝜌 1 − 𝑗 𝛽

2 𝑢 −
1 − 𝑗𝛽−2

1 − 𝑗
 

        With 𝛽2 =
𝑗𝑒𝜌

1
𝑛

 1+
1

𝑛⋅𝑗
𝑗𝑒𝜌

1
𝑛

, 𝑢𝐶𝑆 𝑗, 𝛽 =
1−𝑗𝛽−2

1−𝑗
 

𝜖 𝑢, 𝑗 =
𝑢

𝑢𝑐𝑠 𝑗, 𝛽
− 1 𝛽2𝑢𝑐𝑠 𝑗, 𝛽

𝑣=
𝑢

𝑢𝐶𝑆
,𝜁=𝛽𝜉

 
𝜕2𝑣

𝜕𝜁2
+
𝜋

2

2

𝑣 − 1 = 0 

 Approximate linearization of 𝜖 𝑢, 𝑗 : 

 Transform to effective critical state 



MQE of Power-law Superconductors 
An example of the methodology 
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(1 − 1 − 𝑗 𝑢)
𝐸 𝑢, 𝑗)

𝐸0

1
𝑛

+
𝐸(𝑢, 𝑗)

𝐽𝐶 𝑇0 𝜌𝑚
= 𝑗 

𝜖 𝑢, 𝑗, 𝑛 =
𝐸(𝑗, 𝑢)

(1 − 𝑗)𝐽𝐶 𝑇0 𝜌𝑚
 

=
1

1 − 𝑗 𝑒𝜌

𝐸(𝑢, 𝑗)

𝐸0
 

 Nonlinear current sharing 𝜖 𝑢, 𝑗 : 

𝐸 𝑢, 𝑗

𝐸0
~𝑒𝜌 1 − 𝑗 𝛽

2 𝑢 −
1 − 𝑗𝛽−2

1 − 𝑗
 

        With 𝛽2 =
𝑗𝑒𝜌

1
𝑛

 1+
1

𝑛⋅𝑗
𝑗𝑒𝜌

1
𝑛

, 𝑢𝐶𝑆 𝑗, 𝛽 =
1−𝑗𝛽−2

1−𝑗
 

𝜖 𝑢, 𝑗 =
𝑢

𝑢𝑐𝑠 𝑗, 𝛽
− 1 𝛽2𝑢𝑐𝑠 𝑗, 𝛽

𝑣=
𝑢

𝑢𝐶𝑆
,𝜁=𝛽𝜉

 
𝜕2𝑣

𝜕𝜁2
+
𝜋

2

2

𝑣 − 1 = 0 

 Approximate linearization of 𝜖 𝑢, 𝑗 : 

 Transform to effective critical state 

Power-law approximated to the critical 
state with an increased current sharing 
temperature 𝑢𝑐𝑠: 

𝑀𝑄𝐸 ∝ 1 − 𝑗 𝑗−0.5𝛽−1𝑢𝐶𝑆 𝑗, 𝛽  

= 1 − 𝑗𝛽−2 𝛽−1𝑗−0.5 

Slower reduction than 1-j when 

approaching full current load! 



MQE of Power-law Superconductors 
An example of the methodology 
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Experimental MQE of Adiabatic 2G YBCO Tapes does not vanish with (1-j) 



Account for lateral cooling (1) 
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Add the lateral heat transfer term 

𝑐𝑝 𝑇(𝑥, 𝑡)
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑥
𝑘(𝑇(𝑥, 𝑇))

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
+ 𝐽 ⋅ 𝐸 𝑇 𝑥, 𝑡 , 𝐽 −

ℎ𝑃

𝐴
(𝑇 𝑥, 𝑡 − 𝑇0) 

     with 𝑇 𝑥, 0 = 𝑇0 and 𝑇 𝑥 → ±∞, 𝑡 = 𝑇0 

Maintain the same non-dimensional transformation: 

𝜕𝑢

𝜕𝜏
=
𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

𝜖 𝑢, 𝑗 −
ℎ𝑃𝑙𝑀𝑃𝑍

2

𝑘(𝑇0)𝐴
𝑢 

Hence  

𝜕𝑢

𝜕𝜏
=
𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

𝜖 𝑢, 𝑗 − Cg 𝑗−1 𝑢  with 
ℎ𝑃𝑙𝑀𝑃𝑍

2

𝑘(𝑇0)𝐴
=
𝜋

2

2
ℎ𝑃
𝐴 𝑇𝑐 − 𝑇0

𝐽𝐶 𝑇0
2 𝜌𝑚

=
𝜋

2

2

Cg 

 

 



Account for lateral cooling (2) 
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Introducing a new dimensionless 

number:  

Cg =

ℎ𝑃
𝐴
𝑇𝑐 − 𝑇0

𝐽𝐶 𝑇0
2 𝜌𝑚

 

which is the ratio between lateral 
cooling and current sharing heat 
generation. 

 

Consider single 2G tape (4mm width): 

𝑃 = 8mm,𝐴 = 0.4mm2,
𝑃

𝐴
= 2 × 104m−1 

1. In liquid nitrogen pool 𝑇0 = 77K: 
ℎ = 1 − 3 Wcm−2K~2 × 104Wm−2K,  
𝑇𝐶 − 𝑇0~10K, 𝐼𝐶 𝑇0 = 100A, 
𝐽𝐶 𝑇0 = 2.5 × 108Am−2, 𝜌𝑚 = 3.2 × 10

−9Ωm 
 

Cg = 2 
2. Helium gas cooled 𝑇0 = 20K: 

ℎ =
Nu𝑘𝐻𝑒
𝐷

 ~40Nu Wm−2K 

𝑇𝐶 − 𝑇0~70K, 𝐼𝐶 𝑇0 = 800A, 
𝐽𝐶 𝑇0 = 2 × 109Am−2, 𝜌𝑚 = 3.2 × 10

−10Ωm 
Cg = 0.1 

 



Critical State with lateral cooling 

Minimum Quench Energy of Power-law Superconductors  15 

𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

1 −
Cg

𝑗
𝑢 − 1 = 0

𝑣=
𝑢

𝑢ℎ
,𝑢ℎ=

1

1−Cg 𝑗−1
 

 

 

𝜕2𝑣

𝜕𝜁2
+
𝜋

2

2

𝑣 − 1 = 0 

𝑀𝑄𝐸 ∝ 1 − 𝑗 𝑗−0.5𝑢ℎ 𝑗 =
1 − 𝑗

1 − Cg 𝑗−1
 𝑗−0.5 =

𝑀𝑄𝐸𝐶𝑅
1 − Cg𝑗−1

 

 Approximate transformation to effective critical state 



Power-law superconductors with lateral cooling 
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𝜕2𝑢

𝜕𝜉2
+
𝜋

2

2

𝛽2 𝑢 − 𝑢𝑐𝑠 𝑗, 𝛽 −
Cg

𝑗
𝑢 = 0

𝑣=
𝑢

𝑢ℎ
,𝑢ℎ=

𝑢𝑐𝑠
1−Cg 𝛽−2𝑗−1

 ,𝜁= 𝛽2−Cg𝑗−1𝜉

 
𝜕2𝑣

𝜕𝜁2
+
𝜋

2

2

𝑣 − 1 = 0 
𝑀𝑄𝐸 ∝

1 − 𝑗

𝛽2 − Cg𝑗−1
𝑢ℎ𝑗

−0.5 =
1 − 𝑗𝛽−2

𝛽 1 − Cg𝛽−2𝑗−1 1.5
𝑗−0.5 

 Approximate transformation to effective critical state 



Conclusions 
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1. Explicit current scaling of MQE obtained for power-law 
superconductors shows MQE does not vanish with (1-j) 

2. Scaling consistent with experimental results. 
3. Explicit current scaling of MQE obtained for superconducting 

cables/conductors at different heat transfer coefficient. 
4. A single dimensionless number is sufficient to quantify the 

cooling as a proportion of current sharing heat generation.   


