CONCEOTIONAL DESIGN OF THE LIQUID HYDROGEN MODERATOR COOLING CIRCUIT FOR THE EUROPEAN SPALLATION SOURCE

M. Klausa, Ch. Haberstroha, H. Quacka, Y. Beißlerb, M. Butzekb

aTechnische Universität Dresden, Dresden, Germany, bForschungszentrum Juelich, Juelich, Germany

Motivation

Cryogenic hydrogen serves as moderator fluid in a closed loop to decelerate high energy neutrons in two parallel moderator vessels for scattering experiments in material science. A design proposal for a 5 MW spallation neutron source has been worked out.

Design Requirements

For high neutron intensities the following parameters have to be met:
- Safe, reliable and energy efficient operation
- Hydrogen at 17 K and 1.5 MPa at moderator inlet
- Parahydrogen concentration > 99 \% at moderator inlet
- At 5 MW beam power $\Delta T < 3$ K between moderator inlet and outlet
- Stable density (ρ) at moderator inlet

Parahydrogen Concentration

Need for catalyst (Fe_2O_3) bed:
- $p\text{H}_2$ anti-$p\text{H}_2$, parallel proton spin
- Slow natural conversion $p\text{H}_2 \rightarrow o\text{H}_2 \rightarrow p\text{H}_2$
- Suspected: $o\text{H}_2$ generation due to neutron interaction
- Filter for irradiation products
- Three catalyst designs identified

Continuous $o\text{H}_2$ monitoring:
- Measure adiabatic ΔT over catalyst

Main LH$_2$ Cycle Components

Two turbo pumps (redundancy)
- A) First machine at 6.8 kg/s for 172 kW dynamic neutron heat load; second machine in cold standby as backup
- B) Two pumps at 0.4 kg/s; fail of pump -> single machine at 0.6 kg/s, and reduced beam power

Temperature stabilization in case of beam trips
- A) Electrical heater downstream each moderator
- B) Adjustment of inlet pressure of turbine 3

Pressure stabilization in case of beam trips
- Hydrogen behaves almost as incompressible fluid: small ΔT causes large Δp
- A) Accumulator with helium backed bellows as variable volume
- B) Alternative: Buffer vessel with supercritical hydrogen (not shown in Fig. 1)

Transfer line to moderator reflector plug
- Combination of rigid and flexible line for low Δp and easy decoupling

Helium Refrigerator

Providing refrigeration power to LH$_2$
- Brayton cycle with three turbines
- Remains above H_2 freezing temperature (13.8 K)
- Heat load fluctuation between 4 to 24 kW at 16 K (0 to 5 MW beam power)
- Lower helium pressure than hydrogen
- Long distance, third turbine near H_2 box
- Capacity adjustment of 20 kW within 15 s

Conclusion

A basic concept for a cryogenic hydrogen circulation system for neutron moderation of a 5 MW spallation source has been developed. Future research has to be conducted by designing all components based on updated system boundary conditions and validate their performance. In particular the transient behavior during beam trips and loss of neutron heating is of interest to guaranty safe and specified operation.