Air Liquide cryogenic solutions for HTS refrigeration

Focus on Turbo-Brayton

Cécile Gondrand – ICEC25 – July 9th 2014
Outline

■ Turbo-Brayton for HTS: Why?
■ Turbo-Brayton description
■ Product line range
■ Recent developments
■ Conclusion
Turbo-Brayton – Why?

- Air Liquide is involved in cryogenics systems dedicated to superconductor since its discovery.
- LIPA : a successful project in operation since 2008
Turbo-Brayton – Why?

- Air Liquide is involved in cryogenics systems dedicated to superconductor since its discovery.
- LIPA: a successful project in operation since 2008
Turbo-Brayton – Why?

- LIPA: a successful project in operation since 2008
Turbo-Brayton – Why?

- LIPA experience
 - Classical Brayton refrigerator
 - Several modules for the overall operation
Turbo-Brayton – Why?

- LIPA experience
 - Classical Brayton refrigerator
 - Several modules for the overall operation

- Lessons learnt
 - Simplify the overall system
 - Only one skid => easy and quick installation and commissioning
 - Easier operation and control system
 - Improve the reliability of the refrigerator and its components
 - Improve the efficiency of the refrigerator, with an easy adjustable heat load

⇒ Turbo-Brayton
From conventional Brayton to Turbo-Brayton

- The only rotating part of the system is the Moto-turbo-Compressor shaft

- High efficiency
- No maintenance
- High reliability
- High lifetime

Water

LN2, GHe…
From conventional Brayton to Turbo-Brayton
Turbo-Brayton product line range
Turbo-Brayton Product line – Range

<table>
<thead>
<tr>
<th>Cryogenic power at 77K (kW)</th>
<th>Carnot 27%</th>
<th>Carnot 37%</th>
<th>Carnot 39%</th>
<th>Carnot 41%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBF-80</td>
<td>7.6</td>
<td>20.8</td>
<td>33</td>
<td>50.8</td>
</tr>
</tbody>
</table>
Turbo-Brayton Product line – Range

Cryogenic power at 77K (kW)

- Carnot 27%
- Carnot 37%
- Carnot 39%
- Carnot 41%

<table>
<thead>
<tr>
<th>TBF-80</th>
<th>TBF-160</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>20.8</td>
</tr>
</tbody>
</table>
Turbo-Brayton recent developments
Turbo-Brayton recent developments

- Improvement of the existing range: -15% on electrical consumption
 - Increase of the turbine efficiency
 - Smarter motor control
Turbo-Brayton recent developments

- Improvement of the existing range: -15% on electrical consumption
 - Increase of the turbine efficiency
 - Smarter motor control

- Design of the TBF-350

More than 40% Carnot efficiency
Turbo-Brayton recent developments

- Higher refrigeration capacity available
 - Up to 51 kW at 77K
- Lower temperature
 - Down to 35K

Refrigeration capacity vs Temperature of the Turbo-Brayton product line
Turbo-Brayton recent developments

- Goal: maintain a high reliability on global solution
 - Thermal link required to cool HTS devices: need of a pump for circulating fluid
 - Development of a pump on magnetic bearings

→ Overall MTBF not reduced by the use of ball bearings
Conclusions
Conclusions

- Thanks to ALAT long experience in HTS projects, a complete solution has been developed for efficient and maintenance free refrigeration
 - Complete oil-free technology for refrigerator+pump
 - From 35 to 150K
 - Up to 51kW at 77K
 - Carnot efficiency up to 41%
 - Global MTBF 105 000h

- Developments continue
 - Lower cryogenic temperature to address LTS applications
 - Increase efficiency
Thank you for your attention