Magneto-transport properties and thermally activated flux flow in Ba(Fe$_{0.91}$Co$_{0.09}$)$_2$As$_2$ superconductor

Martin Nikolo1, Xiaoyan Shi2, Eun Sang Choi2, Jianyi Jiang3, Jeremy Weiss3, and Eric Hellstrom3

1Department of Physics, Saint Louis University, St. Louis, MO 63103, USA. 2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
3Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

At the onset of the resistivity knee, fluctuations not related to the Anderson-Kim TAFF model, give rise to initial resistivity. The Arrhenius description of TAFF does not work well there and a better quantitative model needs to be developed.

The onset of TAFF temperature and the crossover temperature T_x from TAFF to flux flow are determined. Considerable flux penetration appears even in the zero resistivity state, in addition to ac losses.

Hence, we determine the flux flow activation energies U of Ba(Fe$_{0.91}$Co$_{0.09}$)$_2$As$_2$ bulk superconductor as a function of magnetic field and temperature.

We determine H-T phase diagram with particular emphasis on the limitations of The Anderson-Kim TAFF regime and the weak pinning state.