Frequency dependent flux dynamics and activation energies in pnictide bulk $(\text{Ba}_{0.56}\text{K}_{0.44})\text{Fe}_2\text{As}_2$ superconductor

Martin Nikolo1, Xiaoyan Shi2, Eun Sang Choi2, Jianyi Jiang3, Jeremy Weiss3, and Eric Hellstrom3

1Department of Physics, Saint Louis University, St. Louis, MO 63103, USA. 2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA 3Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

Measurement

Ac susceptibility vs. temperature as a function of ac magnetic field and frequency in dc magnetic fields 0-18 T

Background

Complex ac susceptibility $\chi = \frac{dM}{dH} = \chi' + i\chi''$

Frequency shift of χ'' peak in temperature T_p provides information about ac losses which are maximum at T_p

Analysis

Arrhenius expression $f = f_0 \exp(-E_a/kT)$. Here E_a is the thermal activation energy, k is the Boltzmann’s constant, and f_0 is a term proportional to the characteristic hopping frequency.

Results

Irreversibility lines determined by T_p show significant broadening with ac field, frequency and dc field.

Conclusion

- We determine flux activation energies as a function of ac and dc magnetic fields in $(\text{Ba}_{0.56}\text{K}_{0.44})\text{Fe}_2\text{As}_2$ bulk superconductor. The activation energy ranges from 8822 K at 0 T to 1100 K at 18 T for $H_{dc}=80$ A/m. We determine pinning transition field (here around 2 T). The activation energy decreases rapidly as ac field increases from 80 A/m to 800 A/m for constant dc field.
- We plot the temperature shift of maximum ac losses as a function of ac field, frequency, and dc field.
- Irreversibility lines show broad dependence on the magnitude of the ac field, frequency, and dc field.
- We show breakdown of the Arrhenius Anderson-Kim model.