

Institute for Technical Thermodynamics and Refrigeration (ITTK) Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany, ttk.kit.edu

Validation of a new method for flow measurement in cryogenic systems

Andreas Janzen^{1,*}, Steffen Grohmann^{1,2}, Heinz Schön², Michael Stamm²

- ¹ Institute for Technical Thermodynamics and Refrigeration (ITTK)
- ² Institute for Technical Physics (ITEP)
- * Email: janzen@kit.edu, Tel.: +49-721-608-42328

The Cal²-Flow measurement principle

Principle

- Caloric measuring principle
- Combined evaluation of energy balance and energy transport
- In situ calibration during operation
- Complete compensation of systematic measuring uncertainties

Advantages

- No additional pressure drop
- Negligible heat input
- Fluid temperature increase of just a few mK
- Uncertainties < 1% w.r.t. the actual flow rate

Experimental validation at room temperature

Reference method

- Sonic nozzle gallery (SNG) with 4 calibrated nozzles
- Flow range: 0.04 g/s $\leq \dot{M}_{SNG} \leq 0.5$ g/s
- Uncertainty of the reference method: $u_{\dot{M}_{SNG}} \le \pm 0.33\%$

First experimental results

Reference M∕ _{SNG} / g/s	Prototype M _{PTS} / g/s	Offset g/s
0.300 ± 0.17%	$0.290 \pm 0.95\%$	- 0.010
0.394 ± 0.15%	$0.391 \pm 0.37\%$	- 0.003
0.467 ± 0.10%	$0.452 \pm 0.36\%$	- 0.015

- Successful validation of the Cal²-Flow measurement principle
- Small heat loads: $\dot{Q} = 10 \dots 40 \text{ mW}$
- Fluid temperature increase: $T_F'' T_F' = 30 \dots 180 \text{ mK}$

- Designed for room temperature experiments
- Tube diameter: 4 mm, total length: 250 mm
- Temperature measurement with 3 PT100 sensors (class A) mounted on copper blocks
- Integrated heating element

- Design improvement to eliminate remaining offset
 - Mean fluid temperatures
 - Heater performance
- Ongoing development of cryogenic sensor and electronics

Literature

Grohmann, S. (2014): A new method for flow measurement in cryogenic systems. Cryogenics, vol. 60, March–April 2014, pp. 9-18.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

