Ratios of W and Z cross sections at large boson p_T (as a constraint on PDFs and background to new physics)

Graeme Watt

Institut für Theoretische Physik, Universität Zürich

PDF4LHC Meeting CERN, Geneva, 17th April 2013

In collaboration with Sarah Alam Malik, arXiv:1304.2424.

$Z(\rightarrow \nu \bar{\nu})$ +jets background to new physics

- Many searches for new physics (SUSY, LEDs, WIMPs, ...) involve looking for missing transverse energy with jets.
- Major irreducible SM background is $Z(\rightarrow \nu \bar{\nu})$ +jets.

[ATLAS, arXiv:1210.4491]

Data-driven methods to estimate $Z(\rightarrow \nu \bar{\nu})$ +jets

Idea: Measure process X with similar kinematic properties, then correct by ratio of $Z(\rightarrow \nu \bar{\nu})$ +jets to X taken from theory.

- $Z(\rightarrow \ell \ell)$ +jets. Only need to multiply by $(Z \rightarrow \nu \bar{\nu})/(Z \rightarrow \ell \ell)$ ratio of branching fractions, but large statistical uncertainty.
- 2 γ +jets. More statistics, but Z/γ ratio has larger theoretical uncertainties. Studied by Z. Bern *et al.* [arXiv:1106.1423, arXiv:1206.6064] ($\Rightarrow < 10\%$ QCD and < 15% EW uncertainties). Also study of Z/γ ratio by S. Ask *et al.* [arXiv:1107.2803].
- **3** $W(\rightarrow \ell \nu)$ +jets. More statistics than $Z(\rightarrow \ell \ell)$ +jets, but $t\bar{t}$ background. Smaller theoretical uncertainties on Z/W ratio.

All three methods have relative advantages and disadvantages.

 \Rightarrow Best to use all three methods to cross-check each other.

Uncertainties on background estimates [ATLAS, arXiv:1210.4491]

Relative systematic uncertainties for all signal regions (in percent):

Source	SR1	SR2	SR3	SR4
$JES/JER/E_{\mathrm{T}}^{\mathrm{miss}}$	1.0	2.6	4.9	5.8
MC Z/W modelling	2.9	2.9	2.9	3.0
MC statistical uncertainty	0.5	1.4	3.4	8.9
$1-\mathit{f}_{\mathrm{EW}}$	1.0	1.0	0.7	0.7
Muon scale and resolution	0.03	0.02	0.08	0.61
Lepton scale factors	0.4	0.5	0.6	0.7
Multijet BG in electron CR	0.1	0.1	0.3	0.6
Di-boson, top, multijet, non-collisions	0.8	0.7	1.1	0.3
Total systematic uncertainty	3.4	4.4	6.8	11.1
Total data statistical uncertainty	0.5	1.7	4.3	11.8

• "MC Z/W modelling" from comparing ALPGEN and SHERPA.

Ratio of W+1-jet to Z+1-jet [ATLAS, arXiv:1108.4908]

- Dedicated ratio measurement validates theory predictions.
- SUSY searches typically use event variables such as 𝑘_T, a vector sum of the jets above a certain p_T threshold [CMS, arXiv:1106.4503], numerically close to boson p_T for V+jets.

Goals of our study [S. Malik, G.W., arXiv: 1304.2424]

- Examine the behaviour of various cross-section ratios $(W^+/W^-, W^+/Z, W^-/Z \text{ and } W^\pm/Z)$ versus boson p_T .
- Study the theoretical uncertainties on these ratios at large values of the boson p_T in more detail than previously.
- Motivate a dedicated measurement to validate theoretical predictions (and possibly help to reduce uncertainties).
- Investigate if we can learn anything new about PDFs from these ratios measured as a function of the boson p_T .

Codes used for $W^+(\to \ell^+ \nu)$, $W^-(\to \ell^- \bar{\nu})$ and $Z^0(\to \ell^+ \ell^-)$

 $p_T^{
m jet}>10$ GeV, $|\eta^{
m jet}|<$ 5, anti- k_T jets with R= 0.5, no lepton cuts.

- MADGRAPH at LO with $N = \{0, 1, 2, 3, 4\}$ jets matched to PYTHIA (using the MLM prescription) and CTEQ6L1 PDFs.
- MCFM for the V+jet process with MSTW08 NLO PDFs.

Flavour decomposition using MADGRAPH+PYTHIA

 $W^+ \Rightarrow gu$

Ratio of do/dp_ valu

Dependence of cross-section ratios on jet multiplicity

Differential cross sections, $d\sigma/dp_T$, for the V+jet process

$d\sigma/dp_T$, normalised to the central NLO prediction

Introduction 00000

Ratios of boson p_T distributions for the V+jet process

Compare MCFM (CTEQ6L1) and MADGRAPH+PYTHIA

Introduction 00000 Summary O

Gluon distribution and u/d ratio versus x

- Consider four NLO PDF sets (**MSTW08**, CT10, NNPDF2.3, ABM11) with $\alpha_S(M_7^2) = \{0.1202, 0.1180, 0.1190, 0.1180\}.$
- Envelope of predictions using **MSTW08**, CT10 and NNPDF2.3 includes implicit $\alpha_S(M_Z^2) \approx 0.119 \pm 0.001$ uncertainty.
- x dependence of gluon $\Rightarrow p_T$ dependence of $d\sigma/dp_T$.
- x dependence of u/d ratio $\Rightarrow p_T$ dependence of W^+/W^- ratio.

Theoretical uncertainties in V+jet production 00000000000000

PDF dependence of differential cross sections, $d\sigma/dp_T$

PDF dependence of ratios of boson p_T distributions

PDF dependence of ratios relative to MSTW08

Potential PDF constraints from W^+/W^- versus p_T^W

Higher-order electroweak corrections

- Effect of large virtual electroweak Sudakov logarithms of \hat{s}/M_V^2 can reach up to a few tens of percent for $d\sigma/dp_T$ at very large boson p_T [Denner *et al.*, arXiv:0906.1656, arXiv:1103.0914].
- Effect cancels in W^+/W^- ratio [Kühn *et al.*, arXiv:0708.0476].
- Decrease in W^+/Z and W^-/Z (and hence W^{\pm}/Z) ratios by 4% at boson $p_T = 1$ TeV and by 7% at $p_T = 2$ TeV at the 14 TeV LHC [Kühn *et al.*, arXiv:0708.0476].
- Smaller electroweak corrections than γ/Z ratio, which increases by 13% at boson p_T = 1 TeV and by 22% at p_T = 2 TeV at the 14 TeV LHC [Kühn *et al.*, hep-ph/0508253].
- Potential partial cancellation from real emission of soft W and Z bosons for sufficiently inclusive measurements [Baur, hep-ph/0611241; Stirling, Vryonidou, arXiv:1212.6537], but small effect expected for typical experimental cuts.

Double ratios at different \sqrt{s} [see Mangano, Rojo, arXiv:1206.3557]

Summary [S. Malik, G.W., arXiv:1304.2424]

- Theoretical (W[±] + jets)/(Z + jets) ratio is a key ingredient in data-driven estimates of the Z(→ νν̄) + jets background.
- Presented detailed study of theoretical uncertainties on W^+/W^- , W^+/Z , W^-/Z and W^\pm/Z ratios versus boson p_T .
- Theoretical QCD and EW uncertainties on W^{\pm}/Z ratio both smaller than for γ/Z ratio: estimate QCD uncertainties to be less than 5%. Useful to check using NLO calculations for higher jet multiplicities, preferably with matching to a parton shower.
- dσ/dp_T can potentially constrain gluon, but large higher-order QCD uncertainties (need NNLO) and electroweak corrections.
- W⁺/W⁻ ratio measured as a function of p^W_T has negligible uncertainties from higher-order QCD and EW, and hence can constrain u/d ratio in a complementary region of x to the W(→ ℓν) charge asymmetry measured as a function of η_ℓ.