

Measurements with PDF information from CMS

M.Isabel Josa (CIEMAT-Madrid)

On behalf of the CMS collaboration

PDF4LHC meeting (CERN)
April 17th, 2013

Outline

- "Measurement of the 3-jet to 2-jet rate and extraction of α_s "
- "Drell-Yan differential cross sections at 7 TeV"
- "Associated production of a W boson and a charm jet at 7 TeV"
- Data: ~ 5 fb-1 pp collisions at 7 TeV (2011)
- Other CMS results sensitive to PDF:
 - Measurement of the inclusive W and Z cross sections at 8 TeV
 - W charge asymmetry
- CMS public results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Measurement of the 3-jet to 2-jet rate and extraction of α_s

QCD-11-003

(https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD11003)

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; \ n \ge 3)}{\sigma(pp \to n \text{ jets } + X; \ n \ge 2)} \qquad vs \left\langle p_{T1,2} \right\rangle = \frac{p_{T1} + p_{T2}}{2}$$

- jet pT > 150 GeV
- **jet rapidity**: |y| < 2.5
- Average dijet p_T as scale: $(p_{T_1}+p_{T_2})/2$
- Scale explored: 250 GeV < (p_{T1}+p_{T2})/2 < 1400 GeV</p>
- Major systematic uncertainties cancel in the ratio: Experimentally \rightarrow luminosity, jet energy scale ...; theoretically \rightarrow choice of μ_r , μ_f or non-perturbative effects.
- The measurement R₃₂ is compared with NLO pQCD theoretical predictions using NNPDF2.1, ABM11, MSTW2008 and CT10 PDF sets.

- Three different High Level single jet Triggers with eff.~100%
- Anti-k_T jet algorithm with R = 0.7
 - Inputs to clustering algorithm: the four-momentum vectors of reconstructed particles
 - Each particle is reconstructed with the particle-flow technique
- Jet Energy Scale Corrections
 - Syst. uncertainty $\Delta R_{32}/R_{32} \sim 1.2\%$
- R₃₂ is corrected for detector smearing effects and unfolded to particle level.
 Unfolding corrections ~ few %
 - Syst. uncertainty $\Delta R_{32}/R_{32} < 1.\%$

Analysis Summary

Selection:

- Events should have two or more jets with p_T>150GeV and |y|<2.5
- Two jets leading in p_T

Results and comparison with theoretical predictions • R₃, ratio rises with increasing < p_T

- R_{32} ratio rises with increasing $< p_{T1,2} >$ as the phase space opens up for the production of the third jet, reaching a plateau value for 600-1000 GeV. At higher $< p_{T1,2} >$ it decreases again because of the running of α_S , smaller parton luminosities, and because 3-jet configurations reach kinematic limits earlier than dijet events.
- NLO calculations using the NNPDF2.1 PDF sets are in agreement with the measured ratio R₃₂ throughout the range of this measurement.
- Scale uncertainties dominate the region up to $p_{T_{1,2}} = 400$ GeV. (Very similar behavior for every PDF set examined).
- PDF uncertainties for NNPDF2.1 are of the order of 1.5% at 400 GeV increasing to 2.3% at 1 TeV.

Results and comparison with theoretical predictions

- For MSTW2008 and ABM11 PDF uncertainties are of the order of 1%.
- For **CT10** PDF uncertainties are 2% at 400 GeV increasing to 2.5% at 1 TeV.
- ABM11 undershoots the experimental data (especially for <pT1,2> < 600 GeV).

Determination of α_s

 $\alpha_s(M_z)$ has been varied in steps of 0.001 and in the range:

NNPDF2.1: (0.106-0.124) MSTW2008: (0.107-0.127)

ABM11: (0.104-0.120)

CT10: (0.110-0.130)

Variations in the R₃₂ ratio are different in each of the four PDF sets

 \rightarrow Difference in the experimental uncertainty in the value of $\alpha_s(M_Z)$ obtained for each PDF set

Determination of α_s

• χ^2 fit to the R₃₂ distribution wrt α_s in the region $\langle p_{T_{1,2}} \rangle > 400$ GeV taking into account experimental uncertainties (use NNPDF predictions).

$$\alpha_S(M_Z) = 0.1148 \pm 0.0014 \text{ (exp.)} \pm 0.0018 \text{ (PDF)}_{-0.0000}^{+0.0050} \text{ (scale)}$$

- PDF uncertainty: Repeat fit for each NNPDF replica and take RMS of the distribution of fitted α_s .
- Scale uncertainty: Repeat fit for six variations of (μ_r, μ_f) . Take differences between central and highest/lowest values.

PDF set	$\alpha_{s}(M_{z})$
MSTW2008	0.1141 ± 0.0022 (exp.)
CT10	o.1135 ± o.0019 (exp.)
ABM11	0.1214 ± 0.0020 (exp.)

• Extraction of α_s also in three independent $< p_{T_{1,2}} > subranges$

Drell-Yan differential cross sections

SMP-13-003

(https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13003)

Drell-Yan cross section

- Standard Model benchmark channel
- Theoretical cross section calculated up to NNLO
 - allowing tests of perturbative QCD
- Differential cross section $(1/\sigma_z)d\sigma/dM$ in dimuon and dielectron channel
 - 15 GeV < M(II) < 1500 GeV; Y(II) < 2.4 ($\mu\mu$), 2.5 (ee)
- Double differential cross section $(1/\sigma_Z)d^2\sigma/dMdY$ sensitive to PDF. Measured in dimuon channel.
 - 20 GeV < $M(\mu\mu)$ < 1500 GeV; $Y(\mu\mu)$ < 2.4
- Differential cross sections normalized to the Z-peak region (60 GeV < M(II) < 120 GeV)
 - Syst. uncert. reduced

Analysis Summary

- Dilepton triggers
- Two high momentum and isolated muons
 - $p_T(\mu_1) > 14 \text{ GeV}, p_T(\mu_2) > 9 \text{ GeV}$
- $|\eta(\mu)| < 2.4$
- Two high momentum and isolated electrons
 - $p_T(e_1) > 20 \text{ GeV}, p_T(e_2) > 10 \text{ GeV}$
- $|\eta(e)| < 2.5$
- Corrected for:
 - Lepton momentum & energy scale ,
 - Lepton efficiencies,
 - Unfolded for detector resolution effects,
 - Final State QED effects
- Reference MC: POWHEG (NLO)+CT10, reweighted to NNLO

$$\omega(P_{\rm T}, Y) = \frac{(d^2\sigma/dP_{\rm T}dY)_{\rm FEWZ}}{(d^2\sigma/dP_{\rm T}dY)_{\rm POWHEG}}$$

17/04/2013

Differential cross section dσ/dM

$$\sigma = \frac{N_{\rm u}}{A \cdot \epsilon \cdot \rho \cdot L_{\rm int}}$$

- N_u = Nb. Events after bck. Sub and unfolding,
- A = acceptance to extrapolate to full phase space (with ref. MC)
- ε = efficiencies (with ref. MC)
- ρ = correcting factor for eff.
- Normalized to the Z-peak (same quantities "norm")
- Excellent agreement between muon and electron channels > combine them

$$R_{\text{pre FSR}}^{i} = \frac{N_{\text{u}}^{i}}{A^{i} \epsilon^{i} \rho^{i}} / \frac{N_{\text{u}}^{\text{norm}}}{A^{\text{norm}} \epsilon^{\text{norm}} \rho^{\text{norm}}}$$

Double differential cross section d²σ/dMdY

- Normalized to the Z peak region (60<M<120 GeV) within |Y| < 2.4
- Comparing to FEWZ + CT10
 NLO and FEWZ + CT10 NNLO

Double differential cross section d²σ/dMdY

Comparison with various NNLO PDFs: ABKM, CT10, CT10W, HERA, JR09, MSTW2008, NNPDF

W+c associated production

SMP-12-002

(https://cdsweb.cern.ch/record/1525727)

Motivation

 The study of associated W plus charm quark production at hadron colliders provides direct access to the strange quark content of the proton at the electroweak scale → help reducing the uncertainties on the strange parton distribution function

- Other contributions (g+d-quark) are small (few %)
- Total and differential W+c cross sections and charge crosssection ratio $\sigma(W^++\bar{c})/\sigma(W^-+c)$

Standard CMS W selection:

- Single muon/electron triggers
- High p_T and isolated lepton:

$$p_{T}(\mu)>25 \text{ GeV}, p_{T}(e)>35 \text{ GeV}$$

High Transverse mass:

$$M_T(\mu, MET)>40$$
 GeV, $M_T(e, MET)>55$ GeV

- □ |η(lepton)| < 2.1
- Jet reconstruction:
 - Anti- k_T , $\Delta R = 0.5$, pT(jet) > 25 GeV, $|\eta(\text{jet})| < 2.5$
- c-tagging:
 - [□] Exclusive and inclusive reconstruction of D meson decays: $c^{\pm} \rightarrow D^{\pm}$, $c^{\pm} \rightarrow D^{*\pm} \rightarrow D^{0} + \pi^{\pm}$, $c^{\pm} \rightarrow I^{\pm}$

Analysis Summary

Standard CMS W selection:

- Single muon/electron triggers
- High p_T and isolated lepton: $p_T(\mu)>25$ GeV, $p_T(e)>35$ GeV
- High Transverse mass: $M_T(\mu, MET)>40$ GeV, $M_T(e, MET)>55$ GeV
- □ |η(lepton)| < 2.1
- Jet reconstruction:
 - Anti- k_T , $\Delta R = 0.5$, pT(jet) > 25 GeV, $|\eta(jet)| < 2.5$
- c-tagging:
 - [□] Exclusive and inclusive reconstruction of D meson decays: $c^{\pm} \rightarrow D^{\pm}$, $c^{\pm} \rightarrow D^{0} + \pi^{\pm}$, $c^{\pm} \rightarrow I^{\pm}$

Analysis Summary

In W+c events the charge of the W (and the lepton) and the charge of the c quark are of opposite sign.

The charge of the c quark is unequivocally determined in the three signatures $(c^{\pm} \rightarrow D^{\pm}, c^{\pm} \rightarrow D^{0} + \pi^{\pm}, c^{\pm} \rightarrow l^{\pm})$

OS events = $sign(W) \times sign(c) < 0$ SS events = $sign(W) \times sign(c) > 0$

→ OS-SS selection

Main bck. contribute equally to OS and SS (including gluon splitting)

→ Subtracted

Clean samples after subtraction

$D^{\pm} \rightarrow K \pi^{\pm} \pi^{\pm}$

Events with a Secondary Vertex with 3 tracks

Signal Region: events in the |m^{REC}-1.87|<0.05 GeV window

 $D^*_{\overline{+}}(2010)^{\pm} \rightarrow D^0 \pi^{\pm} \rightarrow K^{\overline{+}}_{\pi^{\pm}} \pi^{\pm}$

Events with a SV with 2 tracks. The SV is combined with a PV track

M_{SV} compatible with D°:

|M_{SV}-1.864|<0.07 GeV

 $|m_{D*}-m_{Do}-145|<5 \text{ MeV}$

Semileptonic $(c^{\pm} \rightarrow \mu^{\pm})$

Events with an Identified muon within the jet

W+c total cross section

- Fiducial region:
 - Charm quark: $p_T(c) > 25 \text{ GeV}$, |eta(c)| < 2.5
 - $\stackrel{\square}{\longrightarrow}$ I nu: p_T(lepton) > 25 (35) GeV, |eta(lepton)| < 2.1
- Acceptance × efficiency:
 - Reference Monte Carlo: Madgraph+Pythia + Base PDF: MSTWo8NNLO
 - Corrected for detector effects
- Charm branching fractions from LEP
- Good agreement among different subchannels

p_T(lepton) > 25 GeV

Syst. uncert. ~ 6%

 $\sigma(W+c) = \frac{N_{sel} - N_{bkg}}{C_{int} B A \epsilon}$

$$\sigma(pp \to W + c + X) \times \mathcal{B}(W \to \mu\nu, p_T^{\mu} > 25 \text{ GeV}) = 107.7 \pm 3.3 \text{ (stat.)} \pm 6.9 \text{ (syst.) pb}$$

$p_T(lepton) > 35 GeV$

$$\sigma(pp \to W + c + X) \times \mathcal{B}(W \to \ell\nu, p_T^{\ell} > 35 \text{ GeV}) = 84.1 \pm 2.0 \text{ (stat.)} \pm 4.9 \text{ (syst.) pb}$$

Comparison with theory

- MCFM v6.1 at **NLO** $E_T(c-jet) > 25 \text{ GeV}, |\eta(c-jet)| < 2.5, \Delta R = 1$
- MSTWo8, CT10, NNPDF2.3, NNPDF2.3_{collider} (all at NNLO)
- Size of the PDF uncertainties depends on the different methodology used by the various groups to define the 1 sigma PDF uncertainty.
- Data agree with predictions using PDF sets that include low energy DIS data (predict a strange suppression wrt other light quarks)
- PDF with collider data only:
 predict a symmetric light sea, but
 with large uncertainty. In
 agreement with data within 1 σ

Same observations for $p_T(lepton) > 35 \text{ GeV}$

Characterization of the kinematics of W+c events

Overall good agreement

Slightly harder fragmentation spectra in data than in MC

W+c normalized differential cross-sections

$$\frac{1}{\sigma(W+c)} \frac{d\sigma(W+c)}{d\eta} = \frac{(N_{sel,i} - N_{bkg,i})/(\mathcal{A}\epsilon)_i}{\sum_{i=1}^{i=5} (N_{sel,i} - N_{bkg,i})/(\mathcal{A}\epsilon)_i} \times \frac{1}{\Delta\eta_i}$$

- Differential wrt pseudorapidity of the lepton from the W decay

Inclusive selection

- Not focused on resonances, broader phase-space
- Release selection criteria
- Enlarge statistics

W+c normalized differential cross section

- Good agreement among different subchannels and muons and electrons → combine
- Agreement with theory

W+c differential cross section

- Normalizing with the measured total $\sigma(W+c)$
- The two measurements are essentially uncorrelated. Systematic uncertainties come almost entirely from the total cross-section determination.
- Agreement with theory

Charged cross section ratio

- Total and wrt pseudorapidity of the lepton from the W decay
- Inclusive selection
- Relative measurement: Cancellation of syst. uncertainties in the ratio (lepton reco.), statistical uncertainties dominate.

Summary

- Rich variety of CMS experimental results with PDF information at LHC energies.
- Results presented here are from pp collisions @7
 TeV, still 8 TeV data to be/being analyzed, more
 results will come.

Documentation

- QCD-11-003: Measurement of the 3-jet to 2-jet rate and extraction of $\alpha_{\rm s}$. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD
- **SMP-13-003**: Drell-Yan differential cross sections at 7 TeV. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP 13003
- **SMP-12-002:** Associated production of a W boson and a charm jet at 7 TeV. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- CMS public results:

11003

12002

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMF

Thank you for your attention !!

Fitting $\alpha_s(M_z)$

- Perform a χ^2 fit with Experimental uncertainties (taking into account correlations)
- Fitting region: 400-1400 GeV (21 data points)

$$\chi^{2} = M^{T}C^{-1}M$$

$$M_{i} = R_{32}^{i} - T_{32}^{i}$$

$$C = Cov^{stat} + \sum_{n=1}^{7} Cov^{JES_Sources} + \sum_{n=1}^{3} Cov^{Unfold_Sources}$$

with

 Cov^{stat} : is the statistical cov. matrix taking account correlations due to unfolding $Cov^{JES_Sources}$: the cov. matrices taking into account the JES systematicuncertainty sources $Cov^{Unfold_Sources}$: the cov. matrices taking into account the Unfolding systematicuncertainty sources

- Each JES and Unfolding systematic source is treated as 100% correlated across the $\langle p_{T_{1,2}} \rangle$ bins.
- PDF and Scale uncertainties are treated separately.

R32 experimental uncertainties

- Jet energy correction, known to 2.0 2.5%: $\rightarrow \Delta R/R \sim 1.2\%$
 - Provided as 16 mutually uncorrelated sources; fully correlated within source; Gaussian behaviour assumed
 - Dominated by absolute scale, followed by high pT extrapolation
- Unfolding uncertainty accounting for:
 - □ Variation of jet pT spectral slopes following differences from Pythia6 Z2 (agrees with MadGraph) and Herwig++ 2.3 $\rightarrow \Delta R/R < 1.\%$
 - Variation of jet energy resolution (JER)
- Addition of non-Gaussian tails to JER
- Luminosity (normalization) uncertainty cancels
- No assumptions on bin-to-bin correlations with respect to y
 necessary, only 1 bin considered
- Statistical uncertainties propagated via unfolding

Unfolding matrices for DY cross sections

FSR-unfolding matrices for DY cross sections

Drell-Yan → ee

Differential cross section dσ/dM

Drell-Yan -> μμ

CMS Preliminary $1/\sigma_{\rm Z}\,{ m d}\sigma/{ m d}M(\mu\mu)\,{ m [GeV^{-1}]}$ 4.5 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$ $\gamma^*/Z \rightarrow \mu\mu$ 10⁻⁶ Data (μμ, 4.5 fb⁻¹ in 2011) 10⁻⁷ NNLO, FEWZ+CT10 10⁻⁸ NNLO, FEWZ+CT10 (with EWK correction unc.) 10⁻⁹ data/theory 1.5 0.5 15 240 600 30 60 120 1500 M(μμ) [GeV]

Drell-Yan → ee

Systematic uncertainties on W+c total cross section

	$p_{\mathrm{T}}^{\mu} > 25 \mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 35\mathrm{GeV}$
Source	$\Delta_{ m syst} [\%]$	$\Delta_{ m syst} [\%]$
MC statistics	1.6	1.3
Lepton efficiency, resolution	0.8	1.5
Muon efficiency in charm decay	1.4	1.5
Vertex reconstruction	1.8	1.7
Pileup	0.9	0.8
Jet energy scale	3.0	1.7
$ ot\!\!\!/_{\mathrm{T}}$	2.0	2.0
$\mathcal{B}(c \to D^{\pm} \to K^{\mp}\pi^{\pm}\pi^{\pm})$	1.5	1.5
$\mathcal{B}(c \to D^{*\pm}(2010) \to D^0 \to K^{\mp}\pi^{\pm})$	0.7	0.6
$\mathcal{B}(c o \ell)$	2.6	2.7
ISR and Q ² -matching	0.2	0.2
Fragmentation function	0.8	0.6
Other theory uncertainties on $\mathcal{A} \epsilon$	0.8	0.7
DY background	1.4	0.9
Luminosity	2.2	2.2
Total	6.3	5.7

Characterization of the kinematics of W+c events

Overall good agreement

Slightly harder fragmentation spectra in data than in MC

Normalized differential cross section

- Good agreement between the three independent D-tagging channels
- Good agreement of the average values of the electron and muon channels ($p_T>35$ GeV WP)
- Full errors drawn. Main syst. effects cancel in the ratio

Cross section ratio

- Good agreement between the three independent D-tagging channels
- Good agreement of the average values of the electron and muon channels ($p_T>35$ GeV WP)
- Full errors drawn. Main syst. effects cancel in the ratio

Systematic Uncertainties on differential cross section

Most of the effects cancel in the ratio.

	Normalized Diff Xsec.
MC statistics	3-5%
Muon Momentum Scale and Resolution	0.2-0.4%
Electron Momentum Scale and Resolution	1(B)%-1.5%(E)
Muon Reco&ID	0.35%
Electron Reco&ID	0.25%
Background subtraction	0.3%

- Other systematic uncertainties (MET, PileUp Reweighting, Jet Scale and resolution, PDF uncertainties, Charm fragmentation) have been found to have no effect on the ratios
- Statistical error: 5 7% → Normalized diff. measurement dominated by statistical uncertainties

Systematic uncertainties in the cross section ratio

- Overall negligible (effects cancelled out in the measured ratios)
- Remaining uncertainties come from effects on the lepton reconstruction

	Charge Ratio
Muon Momentum Scale and Resolution	0.4-0.8% (0.2-0.3% incl.)
Electron Momentum Scale and Resolution	1(B)%-1.5%(E)

- Lepton charge misidentification < 0.3% (electrons), ~ 10⁻⁴ (muons). The associated systematic uncertainty in the positive to negative cross section ratio ∞ (1.- charge ratio). Charge ratio~1
 →effect is negligible.
- Dominated by statistical uncertainties