PDF systematics in M_W and $sin\theta_W$ precision measurements

giuseppe bozzi

università degli studi di milano

CERN, 17/04/2013

Motivations

- SM precision tests possibly leading to tensions that might point to BSM physics
- $\rightarrow\!$ precision measurement of M_W and of $sin\theta_W$
- measurement of differential cross sections and asymmetries in CC, NC Drell-Yan processes

→ crucial role of proton PDFs

need to study all the available observables and investigate all possible correlations among them to cancel common systematic effects

CC-DY: lepton-pair transverse mass lepton transverse momentum M_W, Γ_W

jacobian peak: control of the lineshape at the per mille level

NC-DY: invariant mass A_FB asymmetry $\sin^2 \theta_W$

possible thanks to the PDF unbalance in forward (backward) region between qqbar and qbarq initiated processes

Impact of theoretical uncertainties on EW precision measurements

- extraction of masses and couplings is based on a template fit procedure:
 - best theoretical prediction for a distribution computed with different $M_W(\sin\theta_W)$ (template)
 - each template is compared to the data
 - measured $M_W(\sin\theta_W) = M_W(\sin\theta_W)$ of the template that maximizes the agreement with the data
- theoretical systematics = uncertainties/ambiguities that affect the evaluation of the templates (PDFs, scales, non-perturbative, different prescriptions, ...)

Focusing on PDFs

- different PDF replicas (or different PDF sets) yields in general a <u>distortion</u> of the template shapes to be compared with data \rightarrow direct impact on the measured value of the observable
- Questions:
 - are PDFs a limiting factor (i.e., forbid a precision measurement)?
 - can we better constrain PDFs with LHC data and reduce their impact on precision measurements?
 - → reweighting technique for a quick estimate of the role of new available data
 - can we exploit correlations (w.r.t. PDFs) between all the available EW observables?
 - → e.g., can we build ratios of observables with reduced PDF uncertainty still sensitive to the EW parameters?

Estimate of the error on MW induced by the PDFs (Bozzi, Rojo, Vicini 1104.2056)

- each PDF replica is used to generate a set of pseudodata (100M events) with a fixed value Mwo
- a very accurate (IB events) set of template distributions has been prepared with a reference (CTEQ6.6) PDF replica
- when pseudodata generated with the reference replica are fitted, the nominal value Mwo is found (sanity check)
- same code (DYNNLO) used to generate both pseudodata and templates → only effect probed is the PDF one

Comments on the template-fitting procedure

- Fit pseudo-data computed in the same approximation and with the same parameters of the templates: the fit should exactly find the nominal value M_{W0} used to generate the pseudo-data (reduced $\chi^2 \sim 1$)
- The accuracy of the fit depends on the error associated to each bin of the pseudo-data
- In the validation test, the $\Delta \chi^2$ = I MW points fix the 68% C.L. interval associated to the estimate of the preferred MW (\rightarrow choice of I00M for pseudodata)

- When the pseudodata have a shape different than the one of the templates, the reduced χ^2 is never close to one because the distributions are "by construction" different
- When the shapes compared are sensibly different, the fitter is pulled towards values very different than the nominal one: the fitter tries to compensate the shape difference, with a large adjustment of MW

PDF effect on M_W from transverse mass distribution

- transverse mass normalized distributions: reduced sensitivity to PDFs
- plot shows ratio of (non-)normalized distributions w.r.t. to central PDF set
- templates and pseudodata computed with same generator and exp. setup: <u>in first approximation the PDF effects factorize</u> <u>w.r.t. all other theoretical and experimental factors</u>

lic .	CTEQ6.6		MSTW2008		NNPDF2.1		
82	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\mathrm{pdf}}^{\mathrm{tot}}$
Tevatron, W [±]	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W-	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W+	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W^-	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

- accuracy of the templates is essential: highly demanding computing task!
- for the transverse mass distribution, a fixed order NLO-QCD analysis is sufficient to assess this PDF uncertainty
- if confirmed, the PDF error is moderate at the Tevatron, but also at the LHC, even before the use of the LHC data

Inclusion of LHC data via reweighting (NNPDF)

- existing PDF replicas can be favored/disfavored by comparison with new LHC data
- → associate a weight to each replica based on how well it describes new data

$$w_k \propto \chi_k^{n-1} e^{-\frac{1}{2}\chi_k^2}$$

where the χ^2 is computed from the new data set containing *n* points

ullet this weight is then used in the evaluation of the PDF spread on any other observable (like M_W)

more details about the evaluation of weights with multiple data sets in arXiv:1108.1758 (NNPDF)

Transverse mass vs. lepton $p_T(1)$

• similar shapes, K-factor quite flat (in relevant region), PS/NLO between -5% and 0 (in relevant region)

- LO: only the W decay generates the lepton pt,
 with Gamma_W smearing effect in the right tail
- NLO-QCD: lepton pt receives contributions from W recoil against QCD radiation (singular at $p_{TW\rightarrow 0}$)
 - → resummation needed!
- matching with shower smears the distribution

Transverse mass vs. lepton $p_T(2)$

- at NLO-QCD gluon-quark subprocesses yield an important contribution
 - → the gluon PDF uncertainty is more pronounced than in the transverse mass case

caveat: 1) the above uncertainties have been computed with DYNNLO at NLO-QCD 2) only the full process has a well defined physical meaning

PDF effect on M_W from lepton p_T

a (very!) preliminary study with DYqT shows that it is possible to partially reduce the PDF uncertainty (e.g. of the quark-gluon luminosity) by studying appropriate ratios of observables which should preserve the sensitivity to MW (in progress)

- W^+ (lepton p_T) distribution sensitive to M_W
- Z (lepton p_T) distribution weakly sensitive to M_W , but probes similar x-ranges

Reduction of the PDF uncertainty on M_W

Two possible strategies (similar in their physical content):

1) correlations

use a large set of observables including also data NOT sensitive to M_W to exploit the possible PDF correlations with the observables that ARE sensitive to M_W (e.g. building ratios that implement some cancellations)

2) improve PDFs

- \blacktriangleright ideally a new fit that includes at differential level all the new LHC measurements; in practice, we need to understand which measurements can be most useful to reduce specifically the uncertainties affecting M_W
- in the short term, we can test the validity of our guesses by applying a reweighting procedure to existing PDFs, checking that a significant reduction of the error is achieved in the long term, the relevant data can be included in a full global fit

In both cases, one needs to analyze at differential level

- ▶ which parton luminosities are responsible for the PDF uncertainty on M_W
- which ranges of x and of the final state invariant mass are probed

$$\sigma(P_1, P_2; m_H) = \sum_{a,b} \int_0^1 dx_1 dx_2 \left(f_{h_1,a}(x_1, M_F) f_{h_2,b}(x_2, M_F) \hat{\sigma}_{ab}(x_1 P_1, x_2 P_2, \alpha_s(\mu), M_F) \right)$$

Mw - PDFs correlation

Large absolute value → large sensitivity
No clear region of maximal sensitivity (gluon seems less important w.r.t. quarks)

Which observables can help?

Contribution of different parton luminosities
 (LO total cross section @LHC 8 TeV, with ATLAS/CMS central cuts)

W+ pro	oduction	W- production			
u-dbar	79.5%	d-ubar	71.5%		
c-sbar	16.1%	s-cbar	24.0%		
u-sbar	3.3%	d-cbar	2.5%		
c-dbar	1.1%	s-ubar	2.0%		

 \bullet Distribution of partonic x in a range relevant for M_W measurement

- ▶ W charge asymmetry
- ▶ W+charm production
- ▶ NC-DY invariant mass and inv. mass AFB

with cuts selecting the relevant x range

Impact of PDF uncertainties on $sin^2\theta_W$ measurement: A_{FB} in NC-DY

$$A_{FB}(M_{l+l-}) = \frac{F(M_{l+l-}) - B(M_{l+l-})}{F(M_{l+l-}) + B(M_{l+l-})}$$

$$B(M_{l+l-}) = \int_{-1}^{0} \frac{d\sigma}{d\cos\theta^*} d\cos\theta^* \qquad F(M_{l+l-}) = \int_{0}^{1} \frac{d\sigma}{d\cos\theta^*} d\cos\theta^*$$

$$\cos\theta^* = f \frac{2}{M(l+l-)\sqrt{M^2(l+l-)} + p_t^2(l+l-)} [p^+(l^-)p^-(l+) - p^-(l^-)p^+(l^+)]$$

$$p^{\pm} = \frac{1}{\sqrt{2}} (E \pm p_z) \qquad f = \frac{|p_z(l+l-)|}{p_z(l+l-)}$$

- At Y_Z=0, A_{FB} is exactly zero: LHC is a symmetric collider (pp) and the asymmetry
 of q-qbar and qbar-q initiated processes cancels
- At large Y_Z , the different weight of q-qbar and qbar-q initiated processes leaves a residual asymmetry: the <u>larger</u> Y_Z , the <u>more pronounced</u> A_{FB}
- The asymmetry is due to the difference between <u>valence</u> and <u>sea</u> components of the quark densities

AFB @ ATLAS/CMS/LHCb

acceptance cuts: $p_{\perp}^{l} > 25 \, \mathrm{GeV}$

ATLAS / CMS $|\eta_l| < 2.5$ LHCb $2.0 < \eta_l < 4.5$

ATLAS/CMS and LHCb, AFB, Born, LHC 7 TeV

- stronger asymmetry at LHCb
- A_{FB} vanishes for $M_{II} \approx 88.5 \text{ GeV}$
- region of maximal sensitivity to $\sin^2\theta_W$ around M_Z , where A_{FB} is still small

PDF uncertainties on AFB: absolute and relative spread

The relative error is almost constant for all invariant masses (below 120 GeV)

Summary of uncertainties on AFB

- the PDF uncertainty dominates over the statistical one (after rebinning)
- \bullet at LHCb the larger asymmetry implies a stronger sensitivity to $\text{sin}^2\theta_W$

Impact of PDF uncertainties on $sin^2\theta_W$ measurement

• template fit procedure: find the preferred $\sin^2\theta_W$ associated to each replica

spread of central values: (max-min)

- $\Delta \sin^2 \theta_W = 0.0007$ ATLAS/CMS $\Delta \sin^2 \theta_W = 0.0001$ LHCb
- envelope of PDF unc. bands: (max-min)
- $\delta \sin^2 \theta_W = 0.0019$ ATLAS/CMS $\delta \sin^2 \theta_W = 0.0005$ LHCb

• statistical unc.(100fb-1):

$$\delta \sin^2 \theta_W = 0.00015 \ {
m ATLAS/CMS} \ {
m LHCb}$$

Correlation of A_{FB} with parton luminosities

$$\rho \left[A_{FB}(M_{ll}^2), \ q(x) \bar{q}(\tau/x) \right] = \frac{\langle A_{FB}(M_{ll}^2) \ q(x) \bar{q}(\tau/x) \rangle_{rep} - \langle A_{FB}(M_{ll}^2) \rangle_{rep} \langle q(x) \bar{q}(\tau/x) \rangle_{rep}}{\sigma_{PDF}^{A_{FB}} \ \sigma_{PDF}^{q\bar{q}}}$$
 NNPDF2.1, AFB ATLAS/CMS, Born, LHC 7 TeV NNPDF2.1, AFB LHCb, Born, LHC 7 TeV odbar ssbar of the property of the prope

- At ATLAS/CMS the x distribution is peaked around x=0.0025At LHCb the x_1 and x_2 distributions are peaked around $x_1=0.2$, $x_2=0.0006$
- The asymmetry is mostly due to the role of the valence component of quarks:
 valence quarks boost the event to large rapidities → positive correlation with (u-ubar, d-dbar)
- The s-sbar and sbar-s processes are (almost) identical:

 (almost) cancel in the numerator but are present in the denominator of AFB and reduce the asymmetry → s-sbar is anti-correlated
- → A precise measurement might help to constrain the up and down densities

Conclusions and outlook

• Template-fit technique

- clear procedure to assess the impact of PDFs on precision EW measurements
- quickly very demanding (CPU time), especially when QCD corrections are included
- intrinsic uncertainty
- Mw from W transverse mass
 - LO and NLO-QCD analyses are both feasible
 - QCD corrections are moderate, fixed order simulation code is sufficient
- M_W from lepton pt
 - LO study not realistic, NLO-QCD shows instabilities at the jacobian peak
 - → need to use a resummed calculation (DYqT), technically challenging (in progress)
- $\sin \theta_W$ from A_{FB} asymmetry
 - LO analysis is feasible, LHCb can be competitive with LEP, larger uncertainty at ATLAS/CMS
 - NLO-QCD study (in progress) shows severe simulation problems (MC fluctuations)

Need

- build ratios of observables in order to reduce PDF uncertainty
- systematic study of correlations between parton luminosities and all available observables: useful indication of relevant data (not only DY) are relevant to reduce the PDF impact
- ▶ a lot of CPU-time!

Back-up slides

A_{FB} : comparison of the central values

ullet The ratio probes the absolute value of A_{FB} (A_{FB} changes sign below 88.5 GeV)

• Larger spread of the central predictions at ATLAS / CMS with respect to LHCb

Sensitivity of A_{FB} to a variation of $\sin^2 \theta_W$

NNPDF2.1, AFB, Born, LHC 7 TeV

$$\delta A_{FB} = A_{FB}(\sin^2 \theta_W + \delta \sin^2 \theta_W) - A_{FB}(\sin^2 \theta_W - \delta \sin^2 \theta_W)$$
$$\delta \sin^2 \theta_W = 0.0001$$

best PDG value $\sin^2\theta_{eff}^{lep}=0.23146\pm0.00012$ can we measure A_{FB} with an accuracy of few parts in 10^{-4} , to extract $\sin^2\theta_W$?

Statistical uncertainty on A_{FB}

- The relative error is not constant for all invariant masses
 - \rightarrow a rebinning procedure can considerably reduce the impact of the statistical error on the measurement of $\sin^2\theta_W$

Impact on $\sin^2 \theta_W$ of the PDF uncertainty on A_{FB}

- ullet for each member/replica <u>template fit</u> preferred $\sin^2 heta_W$ value
- the set of preferred values is then combined according to PDF recipes
- the average NNPDF2. I value coincides with the nominal value used in the templates

Impact on $\sin^2 heta_W$ of the statistical uncertainty on A_{FB}

- 100 pseudo-experiments with NNPDF2.1, assuming a luminosity and adding to each bin gaussianly distributed fluctuations (propagation of the error from the F and B distributions to A_{FB})
- ullet for each pseudo-experiment $\underline{\hspace{0.5cm}}$ template fit $\underline{\hspace{0.5cm}}$ preferred $\sin^2 \theta_W$ value
- statistical combination of the 100 results

Reducing the statistical uncertainty on A_{FB}

• Out of the Z resonance lower # of events \rightarrow larger bins to reduce the fluctuations

• bins chosen to preserve the asymmetry

The role of s,c,b quarks

The momentum fraction distributions at ATLAS/CMS and at LHCb

Summary of the uncertainties on A_{FB}

all PDF sets

- the PDF uncertainty dominates over the statistical one (after rebinning)
- ullet at LHCb the larger asymmetry implies a stronger sensitivity to $\sin^2 heta_W$