Dual-Readout Calorimetry for High-Quality Energy Measurements

Status report of the RD52 (DREAM) Collaboration*

Richard Wigmans

CERN, April 9, 2013

* DREAM (RD52) Collaboration: Cagliari, Cosenza, Lisbon, Pavia, Pisa, Roma, Iowa State, TTU

RD52 is a *generic* detector R&D project *not* linked to any experiment

Goal:

Investigate $+$ eliminate the factors that prevent us from measuring hadrons and jets with similar precision as electrons, photons

Outline:

- Construction of the new fiber calorimeter
- Results of beam tests in 2012
- *Future plans*

DUAL-READOUT CALORIMETRY

· Dual-Readout Method (DREAM):

Simultaneous measurement of scintillation light (dE/dx) and Cerenkov light produced in shower development makes it possible to measure the em shower fraction event by event. The effects of fluctuations in this fraction can thus be eliminated

- DREAM offers a powerful technique to *improve* hadronic calorimeter performance:
	- Correct hadronic energy reconstruction, in an instrument calibrated with electrons!
	- Linearity for hadrons and jets
	- Gaussian response functions
	- Energy resolution scales with $1/\sqrt{E}$
	- $-\sigma/E < 5\%$ for high-energy "jets", in a detector with a mass of only 1 ton! dominated by fluctuations in shower leakage

In other words:

The same advantages as intrinsically compensating calorimeters (e/h = 1) WITHOUT the limitations (sampling fraction, integration volume, time)

RD52 goals:

Reduce the factors that limit the resolution of DR calorimeters as much as possible 1) Shower leakage effects, Construct new, 5-ton fiber calorimeter 2) Čerenkov light yield, $+$ study crystal options (BGO, PbWO₄, BSO) 3) Sampling fluctuations

The new fiber calorimeter

The first SuperDREAM module tested at CERN

Pb absorber 9.3 x 9.3 x 250 cm $150 kg$ 4 towers, 8 PMTs 2 x 2048 fibers

Production of Pb based SuperDREAM modules

The first copper module

The new SuperDREAM fiber module tested at CERN (December 2012)

9 modules (36 towers, 72 signals), 1.4 tonnes Pb/fiber + 2 modules Cu/fiber 20 leakage modules (500 kg plastic scintillator)

Rear side of the new SuperDREAM module

The RD52 fiber calorimeter tested in December 2012

Ring 1

Ring 2 Ring 3

Radial profile and hadronic shower containment

Calibration of the surrounding lateral leakage counters

Beam muons

60 GeV π^-

Electromagnetic performance

S and Č signals sample the showers independently **Resolution improves by combining**

The signal linearity of the new dual-readout fiber calorimeters

Comparison different longitudinally unsegmented fiber calorimeters

Sampling fraction & frequency

Fiber pattern RD52

Absorber thickness between sampling layers (Moliere radii): RD52 0.027 SPACAL 0.071 **DREAM** 0.099

The new RD52 results on 40 GeV electrons $(\theta = 1.5^{\circ})$

Compared with original DREAM results (NIM A536, 29) $(\theta = 2^{\circ})$

The extremely narrow electromagnetic shower profile

Move small beam spot across tower boundary

Channeling effects in fiber calorimeters

DREAM

- Optical fibers only trap light emitted within the *numerical aperture* $\theta_{\rm crit} \sim 20^{\circ}$ for quartz fibers $=$ $\theta_{\rm crit}$
- Comparison of *Čerenkov* light (directional) and *scintillation* light (isotropic) produced in fiber calorimeters

The early, highly collimated em shower component leads to a position dependent response This component does NOT contribute to the Cerenkov calorimeter signals!

Em resolution RD52 compared to other fiber calorimeters

Pion detection in SuperDREAM

Hadron detection with a dual-readout calorimeter

The calorimeter response and energy resolution for single pions

The power of time information

Depth of the light production and the starting point of the PMT signals

Measurement of the depth at which light is produced *(longitudinal shower profile)*

based on the starting time of the calorimeter signals

Measurement of the light attenuation characteristics of the fibers from the starting time of the hadron showers

Future research plans

• Increase the size of the SuperDREAM calorimeter as much as possible for next SPS tests

With only 5 additional modules, average leakage will go from $6.4\% \rightarrow 2.5\%$ DRS readout on leakage counters \rightarrow distinguish mip from neutron leakage \rightarrow Expect significant improvement in hadronic energy resolution

Study issues related to implementing DREAM calorimeters in practice

- Readout: Get rid of rear fiber forests (SiPM)
- Shorter effective interaction length $(W?)$
- Projective geometry

Radial profile and hadronic shower containment

RD52 requests to the SPSC

 \bullet > 20 days of H8 beam in 2014

• Very important: Need to be primary user of T4 particles \rightarrow Schedule H6 users that are insensitive to energy/sign of mips when RD52 is running

Backup slides

Absorber choice: Cu vs Pb

- Detector mass: $\lambda_{Cu} = 15.1$ cm, $\lambda_{Pb} = 17.0$ cm Mass $1\lambda^3$: Cu/Pb = 0.35
- e/mip \rightarrow Cerenkov light yield Cu/Pb ~ 1.4 (Showers inefficiently sampled in calorimeters with high-Z absorber)
- Non-linearity at low energy in calorimeters with high-Z absorber Important for jet detection

The electronic noise in this calorimeter is very small

Polarization measurements

Calorimetric separation of ionization / radiation losses

Muon signals in the DREAM calorimeter

Mapping schema

- ✦ Because of the dimensions of the beam spot, each map overlap partially with the one nearby
- ✦ Problem in reducing the beamspot because too low statistic \Rightarrow fit fails

Uniformity Cherenkov

Uniformity Scintillation

Uniformity distributions

