

Szymon Skorupinski

Oracle Database Security for Developers

Oracle Tutorials, CERN, Geneva, 30th April 2013

Outline

Users A ”
Privileges T
A

Roles
Encryption
SQL injection

Outline

Users

”

N4
O
-

Database users at CERN
Managed through

https://cern.ch/account

More information about account management

Previous tutorial
http://cern.ch/go/F8m6

SNOW knowledge base (accounts, ownership and passwords)
https://cern.service-now.com/service-portal/article.do?n=KB0000947
https://cern.service-now.com/service-portal/article.do?n=KB0001593
https://cern.service-now.com/service-portal/article.do?n=KB0000829

https://cern.ch/account
http://cern.ch/go/F8m6
https://cern.service-now.com/service-portal/article.do?n=KB0000947
https://cern.service-now.com/service-portal/article.do?n=KB0001593
https://cern.service-now.com/service-portal/article.do?n=KB0000829

Database user

Username along with additional set of attributes

Password and its status
Expired or not

Account status
Locked or unlocked

Authentication method

Default tablespaces for permanent and temporary data storage
Tablespace quotas

Profile

User creation (1/2)

Implicit creation of schema
Logical container for database objects
One-to-one relationship with username

SYS@DB> CREATE USER orauserl IDENTIFIED BY "password
DEFAULT TABLESPACE users QUOTA 10M ON users
TEMPORARY TABLESPACE temp
PROFILE cern_dev _profile
PASSWORD EXPIRE
ACCOUNT UNLOCK;

SYS@DB> GRANT create session TO orauserl;

User creation (2/2)

$ sglplus orauserl@db

Enter password:
ERROR:
ORA-28001: the password has expired

Changing password for orauserl
New password:

Retype new password:

Password changed

ORAUSER1@DB>

Useful user-related views

USER_USERS Current user
USER TS QUOTAS Tablespace quotas
ALL_OBJECTS All objects accessible to the current user

USER_OBJECTS All objects owned by the current user

Passwords

Since 1149 (finally!) passwords are case-sensitive
For backward compatibility passwords set in previous version become
case-sensitive only after change is done
Password policies at CERN
Minimum 8 characters
Cannot be the same as username and too simple
Should differ from previous one by at least 3 characters

Contains at least 3 of these categories

Lowercase letters, uppercase letters, numbers, symbols
But avoid usage of # $/ @)

Enforced using password verify function which leads us to...

Profiles

Named sets of limits on database resources and

password access to the database, e.g.
SESSIONS_PER_USER
IDLE_TIME
FAILED_LOGIN_ATTEMPTS
PASSWORD_LIFE_TIME
PASSWORD_REUSE_TIME
PASSWORD_REUSE_MAX
PASSWORD_VERIFY_FUNCTION
PASSWORD_LOCK_TIME
PASSWORD_GRACE_TIME

Useful profile-related views

Password profile parameters that are

USER_PASSWORD LIMITS :
- - assigned to the user

USER RESOURCE_LIMITS Resource limits for the current user

Outline

Privileges \\é)
D

Privileges

Privilege — right to perform particular type of actions or to
access database objects
System privileges — ability to perform particular action on database
or on any object of specific type, e.qg.
CREATE SESSION, DROP ANY TABLE, ALTER ANY PROCEDURE
And over 100 others more
Be careful when using WITH ADMIN OPTION
Object privileges — ability to perform particular action on a specific
schema object, e.g.
SELECT, INSERT, UPDATE, DELETE, EXECUTE

Be careful when using WITH GRANT OPTION

System privileges

Not all objects have dedicated system privileges

ORAUSER1@DB> SELECT username, privilege FROM user_sys privs;

USERNAME PRIVILEGE
ORAUSER1 CREATE TABLE
ORAUSER1 CREATE SESSION

ORAUSER1@DB> CREATE TABLE todel(id INT);

Table created.

ORAUSER1@DB> CREATE INDEX todel idx ON todel(id);
Index created.

ODbject privileges (1/2)

User automatically has all object privileges for
schema objects contained in his/her schema

Different object privileges are available for
different types of schema objects, e.qg.
EXECUTE privilege not relevant for tables

Some objects do not have any associated object
privileges, e.g.
Indexes, triggers, database links

ODbject privileges (2/2)

Shortcut to grant or revoke all privileges possible for specific object
Still individual privileges can be revoked

ORAUSER1@DB> GRANT ALL ON orauserl.todel TO orauser?;
Grant succeeded.

ORAUSER2@DB> SELECT owner, table_name, privilege
FROM user_tab privs WHERE table name = “"TODEL";

OWNER TABLE_NAME PRIVILEGE
ORAUSER1 TODEL ALTER
ORAUSER1 TODEL DELETE

C--2)

Useful privilege-related views

[ALL JUSER]_COL_PRIVS
[ALL |JUSER]_COL_PRIVS_ MADE
[ALL |JUSER]_COL_PRIVS RECD

[ALL |JUSER]_TAB_PRIVS_ MADE

[ALL |JUSER]_TAB_PRIVS RECD
[ALL |JUSER]_TAB_PRIVS
USER_SYS_PRIVS
SESSION_PRIVS

CEfW
\

SZA

Column object grants for which the current [user or PUBLIC|user] is
owner, grantor or grantee

Column object grants for which the current user is object [owner or
grantor|jowner]

Column object grants for which the current [user or PUBLIC|user] is
grantee

Object grants [made by the current user or made on the objects
owned by current user|made on the objects owned by current user]

Object grants for which the [user or PUBLIC|user] is the grantee
Grants on objects where the current [user or PUBLIC|user] is grantee
System privileges granted to the current user

Privileges currently enabled for the current user

Outline

Roles

Roles

Role — named group of related privileges

Could be granted to users or to other roles
Predefined or user-created

Since 11g CONNECT role has only CREATE SESSION privilege
Enabled or disabled

Default roles are automatically enabled
Provide selective availability of privileges
Could be password-protected

PUBLIC role

Be careful - all grants to this role are available to every user

Roles in PL/SQL (1/4)

Disabled in any named definer’s rights PL/SQL block

Enabled in any anonymous or named invoker’s rights PL/SQL
block

Anonymous blocks always behave like invoker’s right ones

Definer’s rights routine — executed with privileges of its owner
Default mode when AUTHID clause not specified
Only EXECUTE privilege needed for other users

Invoker’s rights routine — executed with privileges of the
Invoking user

Roles iIn PL/SOL (2/4)

ORAUSER1@DB> SELECT * FROM session_roles;
ROLE
CONNECT
ORAUSER1@DB> SET SERVEROUTPUT ON
ORAUSER1@DB> DECLARE
I _role_name VARCHAR2(100);
BEGIN
SELECT role INTO I _role name FROM session_roles WHERE rownum =
dbms_output.put line(CHR(10) |] I _role name);
END;
/
CONNECT
PL/SQL procedure successftully completed.

13

Roles iIn PL/SOL (3/4)

ORAUSER1@DB> CREATE OR REPLACE PROCEDURE show_ session_roles definer AS
I_role_name VARCHAR2(100);
BEGIN
SELECT role INTO I _role name FROM session_roles WHERE rownum = 1;
dbms_output.put Line(CHR(10) || I _role_name);
END;
/
Procedure created.
ORAUSER1@DB> EXEC show_session_roles definer
BEGIN show session _roles definer; END;

*

ERROR at line 1:
ORA-01403: no data found

-2

Roles in PL/SQOL (4/4)

ORAUSER1@DB> CREATE OR REPLACE PROCEDURE show_session_roles_invoker
AUTHID CURRENT _USER AS
I _role_name VARCHAR2(100);
BEGIN
SELECT role INTO I _role name FROM session_roles WHERE rownum = 1;
dbms_output.put_line(CHR(10) || 1 _role _name);
END;
/
Procedure created.

ORAUSER1@DB> EXEC show_session_roles invoker

CONNECT
PL/SQL procedure successfully completed.

Roles and DDLSs

Depending on the DDL statement, one or more privileges are
needed to succeed, e.g.
To create a view on a table belonging to another user
CREATE VIEW or CREATE ANY VIEW
SELECT on this table or SELECT ANY TABLE
But these SELECT privileges cannot be granted through a role!
Views are definer's rights objects

In general, when received through a role
All system and object privileges that permit a user to perform a DDL
operation are usable, e.g.
System: CREATE TABLE, CREATE VIEW
Object: ALTER, INDEX

All system and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable

Useful role-related views

USER_ROLE_PRIVS

ROLE_ROLE_PRIVS

ROLE SYS_PRIVS

ROLE TAB_PRIVS

SESSION_ROLES

Roles directly granted to the current user
Roles granted to other roles (only roles to which the
current user has access are listed)

System privileges granted to roles (only roles to which
the current user has access are listed)

Object privileges granted to roles (only roles to which
the current user has access are listed)

All enabled roles for the current user (except PUBLIC)

Thinking about security

Never share your passwords

If access Is required, separate account with the least privileges
needed should be created

Responsibility easy to track with account management

Separation of duties using database accounts
Reader
Writer

Owner

Increasing application security

Using views
Privileges needed only for view, not its underlying objects
Security domain used when view is queried is of its definer (owner)
Can provide access to selected columns of base tables
Can provide access to selected rows (value-based security)

Using stored procedures to encapsulate business logic

Privilege to update specific object only through procedure

Possibility to add more constraints, e.g.
Updates allowed only during business hours

Outline

”

N4
O
-

Encryption

Encryption (1/2)

Way to increase protection for sensitive data

Encryption using PL/SQL
DBMS_CRYPTO (replacing DBMS_OBFUSCATION_TOOLKIT)

Transparent Data Encryption (TDE)
Oracle Enterprise Edition with Advanced Security option required
No application changes needed
Encryption of data before it's written to storage
Decryption of data when it’s read from storage
Two modes supported

Tablespace encryption (11g) — hardware acceleration possible
Column encryption (10gR2)

Encryption (2/2)

Additional protection for data in transit

Network encryption to protect communication to and from the
database

Rejecting connections from clients without encryption

Additional protection for backups
TDE encrypted data remains encrypted
Entire backup and export dump files encryption possibility

Outline

”

N4
O
-

SQL injection

SQL Injection defined

Kind of attack with adding and executing unintended code
from untrusted source

Manipulate select statements
Run DML or even DDL

Run stored procedures
Virtually anything could be done in context of connected user
privileges

Even more with definer’s right procedures
Caused by

Wrong input handling — not only strings!
Implicit types conversions — dangerous

SQL Injection prevention (1/2)

Design security into your application from day 1
Detection very hard and time consuming in post-development phase
Could procedure without any input parameters be injected? Yes...

Use bind variables!
You'll be secure...
...and will get better performance and scalability

If not...

,then you must submit your code for review to at least five people who
do not like you - they must be motivated to rip your code apart, critically
review it, make fun of it - so they find the bugs” - Tom Kyte

SQL Injection prevention (2/2)

If you really have very good technical reasons not to use
binds

Are you sure?
Use DBMS_ASSERT package to sanitize user inputs

Are you 100% sure?
Don’t use implicit types conversions...

...and don’t rely on defaults
Application logic unintended change besides SQL injections

SQL injection — be prepared!

Source: niebezpiecznik.pl

SQL Injection with inputs (1/4)

SQL> CREATE TABLE users (
login VARCHAR2(20),
pass VARCHAR2(20)

);

Table created.

SQL> INSERT INTO users VALUES ("admin®,"pass®);
1 row created.

SQL> COMMIT;
Commit complete.

SQL Injection with inputs (2/4)

SQL> SELECT 1 allow FROM users
WHERE login = "admin® AND pass = "fake";

no rows selected

SQL> SELECT 1 allow FROM users
WHERE login = "admin® AND pass = "pass”;

SQL Injection with inputs (3/4)

SQL> SELECT 1 allow FROM users
WHERE login = "&usr® AND pass = "&pwd";
Enter value for usr: admin
Enter value for pwd: fake®"™ or "a"="a
old 1: SELECT 1 allow FROM users WHERE login
= "&pwd*
new 1: SELECT 1 allow FROM users WHERE login
AND pass = "fake" or "a"="a"

"&usr® AND pass

Tadmin”®

SQL Injection with inputs (4/4)

SQL> VARIABLE usr VARCHAR2(20);

SQL> VARIABLE pwd VARCHAR2(20);

SQL> EXEC :usr := "admin®;

PL/SQL procedure successfully completed.
SQL> EXEC :pwd := "fake"" or ""a"" = ""a";
PL/SQL procedure successfully completed.
SQL> PRINT pwd

PWD

fake™ or "a" = "a

SQL> SELECT 1 allow FROM users WHERE login = :usr AND pass
no rows selected

Zpwd;

SOL injection with inputs (1/7)

SQL> CREATE OR REPLACE PROCEDURE add_user (p_login VARCHAR2, p_pass
VARCHAR2) AS
I_cmd VARCHAR2(1000);

BEGIN
I _cmd = "BEGIN
INSERT INTO users VALUES (""" || p_login || """,
p_pass || ""7);
COMMIT;
END; " ;

dbms _output.put line(l _cmd);
EXECUTE IMMEDIATE 1 _cmd;
END;
/
Procedure created.

SQL Injection with inputs (2/7)

SQL> SET SERVEROUTPUT ON
SQL> SELECT * FROM users;
LOGIN PASS

SQL> EXEC add user("NewLogin®, "NewPass");
BEGIN
INSERT INTO users VALUES ("NewLogin®, "NewPass"®);
COMMIT;
END;
PL/SQL procedure successfully completed.

SQL injection with inputs (3/7)

SQL> SELECT * FROM users;

admin pass
NewLogin NewPass

SQL Injection with inputs (4/7)

SQL> EXEC add user("NewerLogin®, "NewerPass""); INSERT
INTO users VALUES (""FakeUser®"", ""FakePass"");--");

BEGIN
INSERT INTO users VALUES ("NewerLogin®, "NewerPass");
INSERT INTO users VALUES ("FakeUser®", "FakePass®");--");
COMMIT;

END;

PL/SQL procedure successfully completed.

SQL injection with inputs (5/7)

SQL> SELECT * FROM users;

LOGIN PASS
NewerLogin NewerPass
admin pass
NewLogin NewPass

FakeUser FakePass

SQL injection with inputs (6/7)

SQL> EXEC add_user("NewestLogin", "NewestPass"");
EXECUTE IMMEDIATE ""DROP TABLE users®";--");

BEGIN
INSERT INTO users VALUES ("NewestLogin®, "NewestPass®);
EXECUTE IMMEDIATE *DROP TABLE users®;--");
COMMIT;

END;

PL/SQL procedure successfully completed.

SQL Injection with inputs (7/7)

SQL> SELECT * FROM users;

SELECT * FROM users
x
ERROR at line 1:
ORA-00942: table or view does not exist

SQL Injection without inputs (1/10)

SQL> CREATE TABLE users (
login VARCHAR2(30),
pass VARCHAR2(30),
expire TIMESTAMP

)
Table created.

SQL> ALTER SESSION SET nls_timestamp_format = "DD-MM-YYYY
HH24:M1 -SS* ;

Session altered.

SQL Injection without Inputs (2/10)

SQL> INSERT INTO users VALUES ("UserExpired®", "passl234-,
localtimestamp - 1);

1 row created.

SQL> INSERT INTO users VALUES ("UserNotExpired®, "4567pass”,
localtimestamp + 1);

1 row created.

SQL> COMMIT;
Commit complete.

SQL injection without inputs (3/10)

SQL> SELECT * FROM users;

UserExpired passl1234 28-04-2013 11:47:28
UserNotExpired 4567pass 30-04-2013 11:47:32

SQL Injection without inputs (4/10)

SQL> CREATE OR REPLACE PROCEDURE list_expired_users AS

1 _query VARCHAR2(300);
I_query_bind VARCHAR2(300);
I _time TIMESTAMP;
1 _cur SYS_REFCURSOR;
I_login VARCHAR2(30);
BEGIN
I time = localtimestamp;
I _query :-= "SELECT login FROM users WHERE expire <=

I query bind

1] 1_time || ;

:= "SELECT login FROM users WHERE expire <=
:b_var-;

SQL injection without inputs (5/10)

dbms output.put_line("Concatenated query with implicit
conversions: " || | _query);
OPEN 1 _cur FOR 1 _query;
LOOP
FETCH 1 _cur INTO 1 _login;
EXIT WHEN 1_cur%NOTFOUND;
dbms _output.put_line(l_login);
END LOOP;
CLOSE 1 cur;

SQL injection without inputs (6/10)

dbms_output.put_line("Bind variable query: " ||
I query bind);
OPEN 1 cur FOR I _query bind USING 1 _time;
LOOP
FETCH 1 _cur INTO 1 _login;
EXIT WHEN 1 _cur%NOTFOUND ;
dbms _output.put_line(l_login);
END LOOP;
CLOSE 1 cur;
END;
/

SQL injection without inputs (7/10)

SQL> SELECT value FROM v$nls_parameters
WHERE parameter = "NLS TIMESTAMP_FORMAT";

DD-MM-YYYY HH24:MI:SS

SQL> SET SERVEROUTPUT ON

SQL injection without inputs (8/10)

SQL> EXEC list _expired users;

Concatenated query with implicit conversions: SELECT
login FROM users WHERE expire <= "28-04-2013 11:53:21"

UserExpired

Bind variable query: SELECT login FROM users WHERE expire
<= :b_var
UserExpired

PL/SQL procedure successfully completed.

SQL Injection without Inputs (9/10)

SQL> ALTER SESSION SET nls_timestamp _format = """ UNION
SELECT login || " *" || pass FROM users--"";

Session altered.

SQL> SELECT value FROM v$nls parameters
WHERE parameter = “NLS TIMESTAMP_FORMAT*®;

VALUE

"* UNION SELECT login |J] ° " |] pass FROM users--"

SQL> SELECT localtimestamp FROM dual;

LOCALTIMESTAMP

" UNION SELECT login |J] * ® || pass FROM users--

SQL injection without inputs (10/10)

SQL> EXEC list _expired users;

Concatenated query with implicit conversions:

SELECT login FROM users WHERE expire <= "" UNION SELECT login ||
" " || pass FROM users---

UserExpired passl234
UserNotExpired 4567pass

Bind variable query:

SELECT login FROM users WHERE expire <= :b var
UserExpired

PL/SQL procedure successfully completed.

Questions?

Thank you!

HI, THIS 15

YOUR 50N SCHOOL.
WE'RE HAVING SOME
(OMPUTER TROUBLE.

‘t%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN ﬂwp.‘r /

S

DID YCOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES LITTLE
BOBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.
\Il AND T HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

i

www.cern.ch

	Slide Number 1
	Oracle Database Security for Developers
	Outline
	Outline
	Database users at CERN
	Database user
	User creation (1/2)
	User creation (2/2)
	Useful user-related views
	Passwords
	Profiles
	Useful profile-related views
	Outline
	Privileges
	System privileges
	Object privileges (1/2)
	Object privileges (2/2)
	Useful privilege-related views
	Outline
	Roles
	Roles in PL/SQL (1/4)
	Roles in PL/SQL (2/4)
	Roles in PL/SQL (3/4)
	Roles in PL/SQL (4/4)
	Roles and DDLs
	Useful role-related views
	Thinking about security
	Increasing application security
	Outline
	Encryption (1/2)
	Encryption (2/2)
	Outline
	SQL injection defined
	SQL injection prevention (1/2)
	SQL injection prevention (2/2)
	SQL injection – be prepared!
	SQL injection with inputs (1/4)
	SQL injection with inputs (2/4)
	SQL injection with inputs (3/4)
	SQL injection with inputs (4/4)
	SQL injection with inputs (1/7)
	SQL injection with inputs (2/7)
	SQL injection with inputs (3/7)
	SQL injection with inputs (4/7)
	SQL injection with inputs (5/7)
	SQL injection with inputs (6/7)
	SQL injection with inputs (7/7)
	SQL injection without inputs (1/10)
	SQL injection without inputs (2/10)
	SQL injection without inputs (3/10)
	SQL injection without inputs (4/10)
	SQL injection without inputs (5/10)
	SQL injection without inputs (6/10)
	SQL injection without inputs (7/10)
	SQL injection without inputs (8/10)
	SQL injection without inputs (9/10)
	SQL injection without inputs (10/10)
	Questions?
	Slide Number 59

