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Today’s view 
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Writing robust applications 



“It’s a Database, not a Data Dump” 

 

• Database is an integrated collection of 

logically related data 

• You need a database to: 

- Store data… 

- … and be able to efficiently process it in order to 

retrieve/produce information! 
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Design goals 

• Database design – define how to store data to: 

 avoid unnecessary redundancy 

 Storage is not unlimited 

 Redundant data is not logically related 

 retrieve information easily and efficiently 

 Easily – does not necessarily mean with a simple query 

 Efficiently – using built-in database features 

 be scalable for data and interfaces 

 Performance is in the design! 

 Will your design scale to predicted workload (thousands 

of connections)? 
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Conceptual design 

 Process of constructing a model of the 

information used in an enterprise 

 Is a conceptual representation of the data 

structures 

 Is independent of all physical considerations 

 

 

• Input: database requirements 

• Output: conceptual model 
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Conceptual design in practice (sort of) 

• The Entity-Relationship model (ER) is most 

common conceptual model for database 

design: 

 Describes the data in a system and how data is 

related 

 Describes data as entities, attributes, and 

relationships 

 Can be easily translated into many database 

implementations 
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As previously seen… 
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Let’s get real 

• Assume you have to design a database for a 

university/college and want to handle 

enrollments 

• You have the courses taught, each course 

has a title and a regular timeslot each week 

• Each course has many students who study 

the course 

• Each student attends many courses 
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Modeling relationships - example 

• Many – to – many (M:N) 

• A student can be registered on any number of 

courses (including zero) 

• A course can be taken by any number of students 

(including zero) 

• Logical model – normalized form: 
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Student 
 

# student_id 

* last_name 

* first name 

o date_of_birth 

Course 
 

# course_id 

* course_name 

* start_date 

* end_date 

Course_enrollment 
 

# student_id 

# course_id 

* enrollment_date 



Normalization 

• Objective – validate and improve a logical design, 

satisfying constraints and avoiding duplication of data 

• Normalization is a process of decomposing relations 

with anomalies to produce smaller well-structured 

tables: 

- First Normal Form (1NF) 

- Second Normal Form (2NF) 

- Third Normal Form (3NF) 

- Other: Boyce/Codd Normal Form (BCNF), 4NF ... 

• Usually the 3NF is appropriate for real-world 

applications 
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First Normal Form (1NF) 

• All table attributes values must be atomic 

(multi-values not allowed) 

- Eliminate duplicative columns from the same 

table 

- Create separate tables for each group of related 

data and identify each row with a unique column 

(the primary key) 
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CNAME SNAME 

Calculus Smith, Burton 

Physics 1 Simpson, Thompson 
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CNAME SNAME1 SNAME2 

Calculus Smith Burton 

CID SID 

123 456 

123 497 

SID Name Surname 

456 Alan Smith 

497 Thomas Burton 

X 



Second Normal Form (2NF) 

• 1NF 

• No attribute is dependent on only part of the primary 

key, they must be dependent on the entire primary key 

• Example: 

- partial dependency – an attribute is dependent on part of the 

primary key, but not all of the primary key 
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Violation of the 2NF! 

Student(SID, CID, SNAME, CNAME, GRADE) 

SID SNAME CID CNAME GRADE 

456 Smith 123 Calculus A 

456 Smith 221 Physics B 

456 Smith 222 Database Management B 

497 Burton 123 Calculus A 

497 Burton 127 OO Programming A 

497 Burton 222 Database Management B 



Normalization to 2NF 

• For each attribute in the primary key that is 
involved in partial dependency – create a 
new table 

• All attributes that are partially dependent on 

that attribute should be moved to the new 

table 
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Student(SID, CID, SNAME, CNAME, GRADE) 

Student(SID, SNAME)  Class(CID, CNAME) 



Third Normal Form (3NF) 

• 2NF 

• No transitive dependency for non-key 

attributes 

- Any non-key attribute cannot be dependent on 

another non-key attribute 
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Class(CID, CNAME, CLEVEL, ROOM, CAPACITY) 

Violation of the 3NF! 



Normalization to 3NF 

• For each non-key attribute that is transitive 

dependent on a non-key attribute, create a 

table 
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Class(CID, CNAME, CLEVEL, ROOM, CAPACITY) 

  Class(CID, CNAME, CLEVEL, ROOMID) 

  Room(ROOMID, CAPACITY) 



Integrity constraints - PK 

• Primary keys (PK) 

- Role: Enforce entity integrity 

- Attribute or set of attributes that uniquely identifies 
an entity instance 

- Every entity in the data model must have a primary 
key that: 

• is a non-null value 

• is unique  

• it does not change or become null during the table life 
time (time invariant) 

- Use the shortest possible types for PK columns 
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Integrity constraints - FK 

• Foreign keys (FK) 

- Role: maintains consistency between two tables in a relation 

- The foreign key must have a value that matches a primary key 

in the other table or be null 

- An attribute in a table that serves as primary key of another 

table 

- Use foreign keys! 

• foreign keys with indexes on them improve performance of selects, 

but also inserts, updates and deletes 

• indexes on foreign keys prevent locks on child tables 
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Not the best approach 
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Integrity Checks 

• Use DB enforced integrity checks 

- Blindingly fast 

- Foolproof 

- Increases system self-documentation  

• NOT NULL 

• Client side integrity checks 

- Not a substitute for server side checks 

- Better user experience 

- Prevalidation reduces resource usage on server 
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Schema design – best practices 

• Column types and sizing columns 

- VARCHAR2(4000) is not the universal column 

type 

• high memory usage on the client 

• it makes data dump, not database 

• use proper data types, it: 

• Increases integrity 

• Increases performance 

• Might decrease storage needs (IO is time) 

- Put “nullable” columns at the end of the table 
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Schema design – best practices 

• Estimate future workload 
- read intensive? 

- write intensive? 

- transaction intensive? 

- mixture? – estimate the amount of each type 

• Design indexes knowing the workload 
- what will users query for? 

• Minimize number of indexes using proper column order in the 
indexes – use multicolumn indexes 

• Create views, stored procedures (PL/SQL) to retrieve the data in the 
most efficient way – easier to tune in a running system 

- what is the update/insert/delete pattern? 

• Create indexes on foreign keys 

 

30 April 2013 Database and application design 24 



Indexes 

• Less known but worth mentioning: 
- Local indexes vs global indexes 

• Local indexes  
• Stay valid through partition exchange 

• If not prefixed with partition key columns each partition must be 
searched 

• Global indexes 
• Can be ranged partitioned differently than table 

• Can enforce uniqueness  

• Range partitioning only 

- Function based index/virtual column index 
• Built on function or complex calculation  

• create index users_Idx on users (UPPER(name));  

• Speeds up case insensitive searches 

- select * from users where UPPER(name)=‘SMITH’; 
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Partitioning – tips & tricks 

• Investigate partitioning your application 

- You can try partitioning by time, subdetector, subsystem, 
etc 

- Benefits: 

• increased availability – in case of loosing one 
tablespace/partition 

• easier administration – moving smaller objects if necessary, 
easier deletion of history, easier online operations on data 

• increased performance – use of local and global indexes, less 
contention in RAC environment 

- Interval partitioning now available in Oracle 

• create table myPart (columns) partition by range(partColumn) 
interval (NUMTOINTERVAL(1, ‘MONTH’)) (partitions); 
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IOTs 

• Suppose we have an application retrieving 
documents uploaded by given users, list’s 
content and size are dynamic 
- In traditional table rows will be scattered, read index 

then data block 

-  If the table was created as IOT: 

• create table myIOT (…) organization index; 

• Reads index blocks only 

- Also useful in: 

• Association tables in many to many relationships 

• Logging applications (parameter_id and timestamp as 
PK)  
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Compression 

• Table compression 
- Reduces data size by 2 to 10 times 

- Simple compression 
• Only for direct inserts (archival, read only data) 

• create table as select (…)  compress; 

• Insert append 

- Advanced compression 
• Works with read/write workloads 

• Index compression 
- Simple, can vastly improve query performance 

- Low cardinality columns should only be compressed 

- Compression depends on selectivity 
• create index employe_Idx on employees (deptID, groupId, 

supervisorID) (…) compress 1; 
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Views 

• Use views to simplify queries 

• Don’t build up multiple view layers 

- Oracle optimizer might come up with suboptimal 

execution plan 
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Materialized views 

• Materialized views are a way to 
- Snapshot precomputed and aggregated data 

- Improve performance 

• Real-life example 
- Web page presenting a report 

- Multiple users accessing web page 

- Hundreds of request from the web server per second 

… try a materialized view to store that report 

•   RESULT_CACHE hint 
-  Invalidated after DML on underlying objects 

• Refresh your views only when needed 
- ‘on commit’ refreshes are very expensive  
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Denormalization 

• Denormalized DB and Non-normalized DB are 

not the same thing 

• Reasons against 

- Acceptable performance of normalized system 

- Unacceptable performance of denormalized system 

- Lower reliability 

•  Reasons for 

- No calculated values  

- Non-reproducible calculations 

- Multiple joins 
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Function based columns 

Materialized views 



Denormalization 
• 1st step: Talk to your DBAs 

• Main issues 
- Keeping redundant data correct 

- Identifying reasonable patterns 

- Correct order of operations 

• Patterns 
- FETCH 

• Copy item’s price from ITEMS to ORDER_LINES 

- AGGREGATE 
• Put the order_price in ORDERS 

- EXTEND 
• Keep extended_price (price*quantity) in ORDER_LINES 

• http://database-
programmer.blogspot.com/2008/10/argument-for-
denormalization.html 
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Writing robust applications 



PL/SQL – tips & tricks 

• Query parse types 

- Hard parse 

• Optimizing execution plan of a query 

• High CPU consumption 

- Soft parse 

• Reusing previous execution plan 

• Low CPU consumption, faster execution 

• Reduce the number of hard parses 

- Put top executed queries in PL/SQL 
packages/procedures/functions 

- Put most common queries in views 

- It also makes easier to tune bad queries in case of problems 
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PL/SQL – tips & tricks 

• Reduce the number of hard parses 

- Use bind variables 

• Instead of: 

select ... from users where 

user_id=12345 

• Use: 

select ... from users where 

user_id=:uid 

• Using bind variables protects from sql injection 

• More on SQL injection in Szymon’s talk 
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PL/SQL – tips & tricks 

• Beware of bind variables peeking 

- Optimizer peeks at bind variable values before doing hard 

parse of a query, but only for the first time 

- Suppose we have huge table with jobs, most of them already 

processed (processed_flag = 'Y'): 

• using bind variable on processed_flag may change query behavior, 

depending on which query is processed first after DB startup (with 

bind variable set to 'Y' or 'N') 

- On a low cardinality column which distribution can significantly 

vary in time – do not use bind variable only if doing so will 

result in just a few different queries, otherwise use bind 

variables 

 

30 April 2013 Database and application design 36 



PL/SQL – tips & tricks 

• Use PL/SQL as an API  

- Provide abstraction layer 

- Make tuning easier 

- Restrict functionality 

• Reduce the number of hard parses 

- Prepare once, execute many 

• Use prepared statements 

• Dynamic SQL executed thousands of times – consider 

dbms_sql package instead of execute immediate 

• Use bulk inserts whenever possible 
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PL/SQL – tips & tricks 

• Stored procedures vs materialized views 

- Use SPs when refresh on each execution is 

needed 

• Use fully qualified names 

• Instead of: 

select ... from table1 ... 

• Use: 

select ... from schema_name.table1 ... 

- Known bugs – execution in a wrong schema 
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Writing robust applications 



Writing robust applications 

• Use different level of account privileges 

- Application owner (full DDL and DML) 

- Writer account (grant read/write rights to specific 
objects) 

- Reader account (grant read rights) 

- Directly grant object rights or use roles 

• Caution – roles are switched off in PL/SQL code, 

one must set them explicitly. 

- More on security in Szymon’s talk 
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Writing robust applications 

• Use connection pooling 

- Connect once and keep a specific number of 
connections to be used by several client threads 
(pconnect in OCI) 

- Test if the connection is still open before using it, 
otherwise try reconnecting 

- Log connection errors, it may help DBAs to 
resolve any potential connection issues 
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Writing robust applications 

• Error logging and retrying 

- Trap errors 

- Check transactions for errors, try to repeat failed 

transactions, log any errors (including SQL that 

failed and application status – it might help to 

resolve the issue) 

• Instrumentalization 

- Have ability to generate trace at will 

- More information in Performance Tuning talks 
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Writing robust applications 

• Design, test, design, test ... 

• Try to prepare a testbed system – workload 

generators, etc. 

• Do not test changes on a live production system 

• IT-DB provides test and integration system 

(preproduction) with the same Oracle setup as 

on production clusters 

- contact Oracle.Support to obtain accounts and ask 

for imports/exports 
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Writing robust applications 



Where to start 

• This is not an Apex tutorial… 

• Check if your production DB supports Apex 

• Request an Apex workspace on the 
development database 

• Remember about SSO integration 

- https://twiki.cern.ch/twiki/bin/viewauth/DB/CERN
only/ApexCernSSOintegration 

• There is already plenty of Apex apps at 
CERN 

• Apex courses are available 
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As simple as it gets 

• Create application 

• Add pages 

• You’re done ;) 

• Remember what you’ve learned 

- Separate your SQL from presentation 

• Do not write complex queries 

• Use views, stored procedures etc 
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Query: 

select null link, Lastname label , 

count(*) value from enrolled_students 

group by lastname; 
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Writing robust applications 



Documentation 

• Oracle 11g documentation 
• http://www.oracle.com/pls/db112/portal.all_books 

• APEX development tutorial 
• http://docs.oracle.com/cd/E37097_01/doc/doc.42/e35122/toc.htm 

  

 

 

30 April 2013 Database and application design 52 

http://www.oracle.com/pls/db112/portal.all_books
http://www.oracle.com/pls/db112/portal.all_books


30 April 2013 Database and application design 53 


