

Katarzyna Dziedziniewicz-Wojcik IT-DB

30 April 2013 Database and application design 2

Today’s view

23 April 2013 Introduction to Oracle 3

30 April 2013 Database and application design 4

Writing robust applications

“It’s a Database, not a Data Dump”

• Database is an integrated collection of

logically related data

• You need a database to:

- Store data…

- … and be able to efficiently process it in order to

retrieve/produce information!

30 April 2013 Database and application design 5

Design goals

• Database design – define how to store data to:

 avoid unnecessary redundancy

 Storage is not unlimited

 Redundant data is not logically related

 retrieve information easily and efficiently

 Easily – does not necessarily mean with a simple query

 Efficiently – using built-in database features

 be scalable for data and interfaces

 Performance is in the design!

 Will your design scale to predicted workload (thousands

of connections)?

 30 April 2013 Database and application design 6

Conceptual design

 Process of constructing a model of the

information used in an enterprise

 Is a conceptual representation of the data

structures

 Is independent of all physical considerations

• Input: database requirements

• Output: conceptual model

30 April 2013 Database and application design 7

Conceptual design in practice (sort of)

• The Entity-Relationship model (ER) is most

common conceptual model for database

design:

 Describes the data in a system and how data is

related

 Describes data as entities, attributes, and

relationships

 Can be easily translated into many database

implementations

30 April 2013 Database and application design 8

As previously seen…

23 April 2013 Introduction to Oracle 9

Let’s get real

• Assume you have to design a database for a

university/college and want to handle

enrollments

• You have the courses taught, each course

has a title and a regular timeslot each week

• Each course has many students who study

the course

• Each student attends many courses

30 April 2013 Database and application design 10

Modeling relationships - example

• Many – to – many (M:N)

• A student can be registered on any number of

courses (including zero)

• A course can be taken by any number of students

(including zero)

• Logical model – normalized form:

30 April 2013 Database and application design 11

Student

student_id

* last_name

* first name

o date_of_birth

Course

course_id

* course_name

* start_date

* end_date

Course_enrollment

student_id

course_id

* enrollment_date

Normalization

• Objective – validate and improve a logical design,

satisfying constraints and avoiding duplication of data

• Normalization is a process of decomposing relations

with anomalies to produce smaller well-structured

tables:

- First Normal Form (1NF)

- Second Normal Form (2NF)

- Third Normal Form (3NF)

- Other: Boyce/Codd Normal Form (BCNF), 4NF ...

• Usually the 3NF is appropriate for real-world

applications

30 April 2013 Database and application design 12

First Normal Form (1NF)

• All table attributes values must be atomic

(multi-values not allowed)

- Eliminate duplicative columns from the same

table

- Create separate tables for each group of related

data and identify each row with a unique column

(the primary key)

30 April 2013 Database and application design 13

CNAME SNAME

Calculus Smith, Burton

Physics 1 Simpson, Thompson

30 April 2013 Database and application design 14

CNAME SNAME1 SNAME2

Calculus Smith Burton

CID SID

123 456

123 497

SID Name Surname

456 Alan Smith

497 Thomas Burton

X

Second Normal Form (2NF)

• 1NF

• No attribute is dependent on only part of the primary

key, they must be dependent on the entire primary key

• Example:

- partial dependency – an attribute is dependent on part of the

primary key, but not all of the primary key

30 April 2013 Database and application design 15

Violation of the 2NF!

Student(SID, CID, SNAME, CNAME, GRADE)

SID SNAME CID CNAME GRADE

456 Smith 123 Calculus A

456 Smith 221 Physics B

456 Smith 222 Database Management B

497 Burton 123 Calculus A

497 Burton 127 OO Programming A

497 Burton 222 Database Management B

Normalization to 2NF

• For each attribute in the primary key that is
involved in partial dependency – create a
new table

• All attributes that are partially dependent on

that attribute should be moved to the new

table

30 April 2013 Database and application design 16

Student(SID, CID, SNAME, CNAME, GRADE)

Student(SID, SNAME) Class(CID, CNAME)

Third Normal Form (3NF)

• 2NF

• No transitive dependency for non-key

attributes

- Any non-key attribute cannot be dependent on

another non-key attribute

30 April 2013 Database and application design 17

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Violation of the 3NF!

Normalization to 3NF

• For each non-key attribute that is transitive

dependent on a non-key attribute, create a

table

30 April 2013 Database and application design 18

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

 Class(CID, CNAME, CLEVEL, ROOMID)

 Room(ROOMID, CAPACITY)

Integrity constraints - PK

• Primary keys (PK)

- Role: Enforce entity integrity

- Attribute or set of attributes that uniquely identifies
an entity instance

- Every entity in the data model must have a primary
key that:

• is a non-null value

• is unique

• it does not change or become null during the table life
time (time invariant)

- Use the shortest possible types for PK columns

30 April 2013 Database and application design 19

Integrity constraints - FK

• Foreign keys (FK)

- Role: maintains consistency between two tables in a relation

- The foreign key must have a value that matches a primary key

in the other table or be null

- An attribute in a table that serves as primary key of another

table

- Use foreign keys!

• foreign keys with indexes on them improve performance of selects,

but also inserts, updates and deletes

• indexes on foreign keys prevent locks on child tables

30 April 2013 Database and application design 20

Not the best approach

23 April 2013 Introduction to Oracle 21

Integrity Checks

• Use DB enforced integrity checks

- Blindingly fast

- Foolproof

- Increases system self-documentation

• NOT NULL

• Client side integrity checks

- Not a substitute for server side checks

- Better user experience

- Prevalidation reduces resource usage on server

30 April 2013 Database and application design 22

Schema design – best practices

• Column types and sizing columns

- VARCHAR2(4000) is not the universal column

type

• high memory usage on the client

• it makes data dump, not database

• use proper data types, it:

• Increases integrity

• Increases performance

• Might decrease storage needs (IO is time)

- Put “nullable” columns at the end of the table

 30 April 2013 Database and application design 23

Schema design – best practices

• Estimate future workload
- read intensive?

- write intensive?

- transaction intensive?

- mixture? – estimate the amount of each type

• Design indexes knowing the workload
- what will users query for?

• Minimize number of indexes using proper column order in the
indexes – use multicolumn indexes

• Create views, stored procedures (PL/SQL) to retrieve the data in the
most efficient way – easier to tune in a running system

- what is the update/insert/delete pattern?

• Create indexes on foreign keys

30 April 2013 Database and application design 24

Indexes

• Less known but worth mentioning:
- Local indexes vs global indexes

• Local indexes
• Stay valid through partition exchange

• If not prefixed with partition key columns each partition must be
searched

• Global indexes
• Can be ranged partitioned differently than table

• Can enforce uniqueness

• Range partitioning only

- Function based index/virtual column index
• Built on function or complex calculation

• create index users_Idx on users (UPPER(name));

• Speeds up case insensitive searches

- select * from users where UPPER(name)=‘SMITH’;

30 April 2013 Database and application design 25

Partitioning – tips & tricks

• Investigate partitioning your application

- You can try partitioning by time, subdetector, subsystem,
etc

- Benefits:

• increased availability – in case of loosing one
tablespace/partition

• easier administration – moving smaller objects if necessary,
easier deletion of history, easier online operations on data

• increased performance – use of local and global indexes, less
contention in RAC environment

- Interval partitioning now available in Oracle

• create table myPart (columns) partition by range(partColumn)
interval (NUMTOINTERVAL(1, ‘MONTH’)) (partitions);

30 April 2013 Database and application design 26

IOTs

• Suppose we have an application retrieving
documents uploaded by given users, list’s
content and size are dynamic
- In traditional table rows will be scattered, read index

then data block

- If the table was created as IOT:

• create table myIOT (…) organization index;

• Reads index blocks only

- Also useful in:

• Association tables in many to many relationships

• Logging applications (parameter_id and timestamp as
PK)

30 April 2013 Database and application design 27

Compression

• Table compression
- Reduces data size by 2 to 10 times

- Simple compression
• Only for direct inserts (archival, read only data)

• create table as select (…) compress;

• Insert append

- Advanced compression
• Works with read/write workloads

• Index compression
- Simple, can vastly improve query performance

- Low cardinality columns should only be compressed

- Compression depends on selectivity
• create index employe_Idx on employees (deptID, groupId,

supervisorID) (…) compress 1;

30 April 2013 Database and application design 28

Views

• Use views to simplify queries

• Don’t build up multiple view layers

- Oracle optimizer might come up with suboptimal

execution plan

30 April 2013 Database and application design 29

Materialized views

• Materialized views are a way to
- Snapshot precomputed and aggregated data

- Improve performance

• Real-life example
- Web page presenting a report

- Multiple users accessing web page

- Hundreds of request from the web server per second

… try a materialized view to store that report

• RESULT_CACHE hint
- Invalidated after DML on underlying objects

• Refresh your views only when needed
- ‘on commit’ refreshes are very expensive

30 April 2013 Database and application design 30

Denormalization

• Denormalized DB and Non-normalized DB are

not the same thing

• Reasons against

- Acceptable performance of normalized system

- Unacceptable performance of denormalized system

- Lower reliability

• Reasons for

- No calculated values

- Non-reproducible calculations

- Multiple joins

30 April 2013 Database and application design 31

Function based columns

Materialized views

Denormalization
• 1st step: Talk to your DBAs

• Main issues
- Keeping redundant data correct

- Identifying reasonable patterns

- Correct order of operations

• Patterns
- FETCH

• Copy item’s price from ITEMS to ORDER_LINES

- AGGREGATE
• Put the order_price in ORDERS

- EXTEND
• Keep extended_price (price*quantity) in ORDER_LINES

• http://database-
programmer.blogspot.com/2008/10/argument-for-
denormalization.html

30 April 2013 Database and application design 32

30 April 2013 Database and application design 33

Writing robust applications

PL/SQL – tips & tricks

• Query parse types

- Hard parse

• Optimizing execution plan of a query

• High CPU consumption

- Soft parse

• Reusing previous execution plan

• Low CPU consumption, faster execution

• Reduce the number of hard parses

- Put top executed queries in PL/SQL
packages/procedures/functions

- Put most common queries in views

- It also makes easier to tune bad queries in case of problems

30 April 2013 Database and application design 34

PL/SQL – tips & tricks

• Reduce the number of hard parses

- Use bind variables

• Instead of:

select ... from users where

user_id=12345

• Use:

select ... from users where

user_id=:uid

• Using bind variables protects from sql injection

• More on SQL injection in Szymon’s talk

30 April 2013 Database and application design 35

PL/SQL – tips & tricks

• Beware of bind variables peeking

- Optimizer peeks at bind variable values before doing hard

parse of a query, but only for the first time

- Suppose we have huge table with jobs, most of them already

processed (processed_flag = 'Y'):

• using bind variable on processed_flag may change query behavior,

depending on which query is processed first after DB startup (with

bind variable set to 'Y' or 'N')

- On a low cardinality column which distribution can significantly

vary in time – do not use bind variable only if doing so will

result in just a few different queries, otherwise use bind

variables

30 April 2013 Database and application design 36

PL/SQL – tips & tricks

• Use PL/SQL as an API

- Provide abstraction layer

- Make tuning easier

- Restrict functionality

• Reduce the number of hard parses

- Prepare once, execute many

• Use prepared statements

• Dynamic SQL executed thousands of times – consider

dbms_sql package instead of execute immediate

• Use bulk inserts whenever possible

30 April 2013 Database and application design 37

PL/SQL – tips & tricks

• Stored procedures vs materialized views

- Use SPs when refresh on each execution is

needed

• Use fully qualified names

• Instead of:

select ... from table1 ...

• Use:

select ... from schema_name.table1 ...

- Known bugs – execution in a wrong schema

30 April 2013 Database and application design 38

30 April 2013 Database and application design 39

Writing robust applications

Writing robust applications

• Use different level of account privileges

- Application owner (full DDL and DML)

- Writer account (grant read/write rights to specific
objects)

- Reader account (grant read rights)

- Directly grant object rights or use roles

• Caution – roles are switched off in PL/SQL code,

one must set them explicitly.

- More on security in Szymon’s talk

30 April 2013 Database and application design 40

Writing robust applications

• Use connection pooling

- Connect once and keep a specific number of
connections to be used by several client threads
(pconnect in OCI)

- Test if the connection is still open before using it,
otherwise try reconnecting

- Log connection errors, it may help DBAs to
resolve any potential connection issues

30 April 2013 Database and application design 41

Writing robust applications

• Error logging and retrying

- Trap errors

- Check transactions for errors, try to repeat failed

transactions, log any errors (including SQL that

failed and application status – it might help to

resolve the issue)

• Instrumentalization

- Have ability to generate trace at will

- More information in Performance Tuning talks

30 April 2013 Database and application design 42

Writing robust applications

• Design, test, design, test ...

• Try to prepare a testbed system – workload

generators, etc.

• Do not test changes on a live production system

• IT-DB provides test and integration system

(preproduction) with the same Oracle setup as

on production clusters

- contact Oracle.Support to obtain accounts and ask

for imports/exports

30 April 2013 Database and application design 43

30 April 2013 Database and application design 44

Writing robust applications

Where to start

• This is not an Apex tutorial…

• Check if your production DB supports Apex

• Request an Apex workspace on the
development database

• Remember about SSO integration

- https://twiki.cern.ch/twiki/bin/viewauth/DB/CERN
only/ApexCernSSOintegration

• There is already plenty of Apex apps at
CERN

• Apex courses are available

30 April 2013 Database and application design 45

https://twiki.cern.ch/twiki/bin/viewauth/DB/CERNonly/ApexCernSSOintegration
https://twiki.cern.ch/twiki/bin/viewauth/DB/CERNonly/ApexCernSSOintegration
https://twiki.cern.ch/twiki/bin/viewauth/DB/CERNonly/ApexCernSSOintegration

As simple as it gets

• Create application

• Add pages

• You’re done ;)

• Remember what you’ve learned

- Separate your SQL from presentation

• Do not write complex queries

• Use views, stored procedures etc

30 April 2013 Database and application design 46

30 April 2013 Database and application design 47

30 April 2013 Database and application design 48

30 April 2013 Database and application design 49

30 April 2013 Database and application design 50

Query:

select null link, Lastname label ,

count(*) value from enrolled_students

group by lastname;

30 April 2013 Database and application design 51

Writing robust applications

Documentation

• Oracle 11g documentation
• http://www.oracle.com/pls/db112/portal.all_books

• APEX development tutorial
• http://docs.oracle.com/cd/E37097_01/doc/doc.42/e35122/toc.htm

30 April 2013 Database and application design 52

http://www.oracle.com/pls/db112/portal.all_books
http://www.oracle.com/pls/db112/portal.all_books

30 April 2013 Database and application design 53

