

Stephan Petit — GS/ASE-EDS

Oracle Tutorials
PL/SQL Best Practices

PL/SQL Best Practices - Agenda

Why best practices ?
The Black Box Paradigm

Coding conventions

Why coding conventions ?

One set of coding conventions that works
Error handling

Trapping

Reporting

Recovering

Summary

References

Why Best Practices ?

Why Best Practices ?

Proven efficiency
Tuned over the years

Shared by many
Bring more efficiency in coding/maintenance

Avoid common mistakes

The Black Box Paradigm

The Black Box Paradigm

Not dedicated to PL/SQL
It works very well with PL/SQL !

A Black Box:
Performs a well identified action

Autonomously : all steps from ato z
Uniquely : two different boxes cannot do the same action

Has a clear list of input necessary for its action
Always checks the input

Checks the action is allowed

Always returns an output (status/data)

The Black Box Paradigm

) 4

Input Output
* mandatory parameters * status (done/warning/error)
 optional parameters » data (fetched/computed)

e user id (action allowed ?) e user interface

The Black Box Paradigm

Action

How It works inside is not your business !
The Input and output are for you,
the rest Is the job of the box

The Black Box Paradigm

Action
D

Boxes can be combined to implement more complex actions

cﬁw
\

N/ S

The Black Box Paradigm

Action
Z

Leading to new black boxes ! Etc...

CE/RW
_/

PL/SQL & Black Boxes

Being involved in programming, you will:
Use existing black boxes
Write new black boxes

In both cases:
You want to be able to trust them

You want to be able to understand then, maintain
or debug them, even years after they were created

Consider every single PL/SQL procedure or
function as a black box

PL/SQL Modules Classification

It Is advisable to classify PL/SQL modules
according to the type of actions they perform
Better modularity
Better reusabllity
Prevents from code duplication

In the end: powerful library of modules, like
with OO approach

PL/SQL Modules Classification

One efficient PL/SQL modules classification:
Data action (insert, update, delete)

Data fecthing / computation Kernel

Data checking / authorization

User interface display Interface

PL/SQL Module Grouping

It Is advisable to group PL/SQL modules by
themes

Easier to find the module you need

Use packages

Example: one package for data checkers, one for
authorization checkers etc...

Coding Conventions

Why Coding Conventions ?

= Not slow understanding

The code becomes more easy to read

It is faster to see and understand with your eyes what
the structure of a piece of code is, hence quickly

understanding how it works

Better for using the same code among several people
in the same team of even coming from various
different teams

Higher rate of 2/amount of misunderstanding

Oracle Tutonials: PL/SQL

Why Coding Conventions ?

Quick understanding
Code Is easy to read
Code structure visible in a glance
Easier code sharing
Less misunderstanding

Why Coding Conventions ?

Reliability
Easier code review
Code is understandable
Obvious bugs are smashed
Easier to find a reviewer !

Why Coding Conventions ?

Maintainability
Easier debugging

Easier modifications

Crucial for long lifetime systems and quick
turnover in teams

Why Coding Conventions ?

Security

Systematic use of proven code patterns

Example: use of bind variables against SQL
Injection

Why Coding Conventions ?

Trainability
Crucial when quick turnover in teams

Any team member can train any new comer the
same way

Why Coding Conventions ?

Speed in coding
Prevents from reinventing the wheel
Less thinking about « style »
Easier reuse of existing pieces of code

Why Coding Conventions ?

Error handling

Errors are handled in a systematic and standard
way

Why Coding Conventions ?

Quick understanding
Reliability
Maintainabllity
Security

Trainability

Speed In coding
Error handling

Coding Conventions bring great things
but they require some efforts

Coding Conventions

One Set of Coding Conventions

The following coding conventions are being
In use in GS/ASE for more than 15 years

They have proven their efficiency

They are given as an example, other
conventions may also be good

The most important:
Have and follow coding conventions !

Coding Conventions

Use UPPER CASE for:
SQL and PL/SQL keywords
Module names
Exceptions
Constants and types

Use lower case for
Variables
Comments

Tables, views etc... names
Column names

- Case

Coding Conventions: Comments

Use -- instead of /~.»/

Easier to comment a whole block of code when
debugging

BEGIN
IF p book 1d < O THEN
-— This case should not happen unless the book was lost
-— Carry on by checking the list of lost books

END IF;
END;

&)

N/ S

Coding Conventions: Naming

Parameter naming
p_nhame

Local variable naming
I name

Constant naming
C_NAME

Type naming
T_NAME

etc...

Coding Conventions: Indenting

General indentation:
Two blanks indicate a new logical block
Example

BEGIN
I _author := “Pierre Boulle’;
IF p_book 1d = 12345 THEN
FOR 1 counter IN 1..100 LOOP

END LOOP;
END IF;
END;

&)

N/ S

Coding Conventions: Indenting
SELECT statement:

SELECT editor
,publication_date

,title
FROM books
WHERE book 1d = 12345
OR (title = “Planet of the Apes’
AND author = “Pierre Boulle’
)

ORDER BY title;

Coding Conventions: Indenting

INSERT statement:
It Is much safer to specify the column names

INSERT INTO books (
book 1d
,title
,author
)
VALUES (
12345
, Planet of the Apes~’
, Pierre Boulle’

)

Coding Conventions: Indenting

|F statement:

Important: make sure there is always an ELSE
statement

IF I_var 1S NULL THEN

ELSE
IF I var > O AND I var < 100 THEN

ELSE

END IF;
END IF;

&)

N/ S

Coding Conventions: Indenting
Concatenation:

I text := “Today we are’
| | TO_CHAR(SYSDATE, “DD-MM-YYYY?)
|| and the time is ©
| | TO_CHAR(SYSDATE, “HH24:MI17);

Coding Conventions: Indenting

Ccommas:

Better at the beginning of each line, rather than
at the end (lines are easier to add or remove)

SELECT col_1
,col 2
,col 3
FROM table
WHERE col 1 > O
AND col 2 IS NOT NULL
AND col 3 LIKE “Hello%”;

Coding Conventions: Parameters

To declare a procedure

PROCEDURE GET$BOOK_AUTHOR(

p_book 1id IN NUMBER = NULL
,p_title IN VARCHAR2 := NULL
,p_author OUT VARCHARZ2
) IS
BEGIN
END;

Advice: if a parameter is optional, use NULL
as default value for easier debugging

Coding Conventions: Parameters

To call a procedure, use the syntax =>

No ambiguity regarding which parameter gets
which value

I _author books.author%TYPE;

KNL_LIBRARY .GET$BOOK_ AUTHOR(
p_book 1d => 12345
,p_author => 1 _author

);

Coding Conventions: Constants

Constants (declared in package headers) are
a must when strings or numbers have to be
compared

C_ANSWER 1 CONSTANT VARCHAR2(50) := “Blue’;
IF p_answer = “blue” THEN

END IF;

IF p answer = C ANSWER 1 THEN

END IF;

9)

N/ S

Coding Conventions: Dynamic Code

Use bind variables
Very good protection against code injection

I statement := “INSERT INTO log table (
log date
,10g_text
)
VALUES (
-1 _date
, -1 _text
)73
EXECUTE IMMEDIATE 1 statement
USING IN SYSDATE
,IN “Hello World !~”;

9)

N/ S

Coding Conventions: Metadata

Very useful: a block of comments before all modules

/* ___ */
/* */
/* Module : EXE$PROCEDURE_NAME */
/* Goal : Short description of the module/procedure. */
/* Keywords : Few keywords describing what the module does. */
/* Type : CHECK INTERFACE DATA_ACTION DATA_RETRIEVER */
* *
R 7/
/* Description: */
/* */
/* Long description of the procedure: its goal. */
/* Explanation about parameters (Input and Output). */
/* How the procedure works, the "tricks", etc. */
/* */
/* ___ */
/* History: */
/* */
/* YYYY-MM-DD : First name and Name - Creation. */
/* */
/* YYYY-MM-DD : First name and Name - Review */
/* */
/* YYYY-MM-DD : First name and Name */
/* Description of the modification. */
/* */
/* ___ */

PROCEDURE EXE$PROCEDURE_NAME(
p_paraml IN VARCHAR2

Error Handling

Error Handling

Errors can produce
A crash of the system

A result that is not correct (without crashing)
or not understandable

Lots of time may be spent on support /
debugging

Hence the importance of instrumenting the code

Three types of error handling
Trapping
Reporting
Recovering

Error Handling: Trapping

Use custom exceptions
Advice: always have a ‘when others’ exception
Possibility to add useful info in case of crash

BEGIN

EXCEPTION
WHEN L MY _ EXCEPTION THEN
-— Specific treatment for this error

WHEN OTHERS THEN
—— Generic handling (output of parameters for ex.)

END;

Error Handling: Reporting

Once caught, errors have to be reported

To the system manager

System values, parameters, failing module name
etc...

To the user
Friendly and clear texts

From a module to its caller

Stuff that can be used by a piece of code to react
the best possible way

Error messages
For humans: text

For machines: codes

Error Handling: Reporting

Basic skeleton of a kernel stored procedure (1/3)

PROCEDURE GET$BOOK_AUTHOR(

p_book_id IN NUMBER = NULL
,p_title IN VARCHAR2 := NULL
,p_author OUT VARCHAR2
,p_exitcode OUT NUMBER

OUT VARCHAR2

) IS

BEGI
p_exitcode :
p_exittext :

I
o

NULL;

Systematically in all

EXCEPTION kernel procedures

END; -- GET$BOOK_AUTHOR

Error Handling: Reporting

Basic skeleton of a kernel stored procedure (2/3)

BEGIN

IF p_book id IS NULL AND p_title IS NULL THEN
-- We have no input to compute the author of the book !

p_exitcode := 20150; -- Invalid input
p_exittext := “At least an i1d or a title has to be provided’;
RAISE L PB_FATAL;
END IF;
EXCEPTION

WHEN L _PB FATAL THEN
IF p_exitcode = 0 THEN
p_exitcode := 20000; -- Error not documented
END IF;
END;

Error Handling: Reporting

Basic skeleton of a kernel stored procedure (3/3)

BEGIN

EXCEPTION
WHEN L PB_FATAL THEN
IF p_exitcode = 0O THEN
p_exitcode := 20000; -- Error not documented
END IF;
WHEN OTHERS THEN
p_exitcode

The original error is
forwarded, with more

intersting info

p_exittext = SUBSTR(“Unexpected error:

|1° in GET$BOOK AUTHOR with parameters *
| INVL(p_book_id, “NULL?)
|]1°- Please contact sys.support@cern.ch’;

Error Handling: Reporting

Standard call to a kernel module:

PROCEDURE GET$BOOK_DATA(
p_book_id
,p_author
,p_editor
,p_exitcode
,p_exittext
) IS

L _PB_FATAL

IN

NUMBER
OUT VARCHAR2
OUT VARCHARZ2
OUT NUMBER
OUT VARCHARZ2

EXCEPTION;

BEGIN
KNL_LI1BRARY .GET$BOOK_AUTHOR(
p_book 1d => p_book_ id
,p_author => p_author

,p_exitcode => p_exitcode
,p_exittext => p_exittext
)
IF p_exitcode <> 0 THEN
RAISE L_PB FATAL;
END 1F;

EXCEPTION
WHEN L_PB_FATAL THEN

END;

Error Handling: Recovering

What If a data action procedure fails ?

B-8-s--E

Input Output

Error Handling: Recovering

What If a data action procedure fails ?

.~ Proc.

S ccess

B-8-s--E

Input Output

Error Handling: Recovering
What If a data action procedure fails ?

IT s ok to fail but in
a correct way |
. I Good -
Foulure ﬁ
NOT good !

g-2-2/

Input

Error Handling: Recovering

Use savepoints in all data action modules

PROCEDURE REGISTER$BOOK(

,p_exitcode OUT NUMBER

,p_exittext OUT VARCHAR2
) IS
L_PB_FATAL EXCEPTION;
BEGIN
<::§EYEPOINT BEFORE_REGlSTERlNG_B§§Ez::>
EXCEPTION

WHEN L_PB_FATAL THEN
ROLLBACK TO BEFORE_REGISTERING_BOOK;
WHEN OTHERS THEN

ROLLBACK TO BEFORE_REGISTERING_BOOK;

END; -- GET$BOOK=AUTHOQ

c&ﬁy
\

N/ S

Error Handling: Procs vs. Funcs

What about functions ?

Functions should return one single value and
have no OUT parameters (although its is
possible)

Therefore, difficult to have a precise error reporting

Functions must return something
What does a NULL return mean ? Error or not ?

Advice: use functions only for very simple
computations, that never crash (!)

Error Handling: Display Modules

Test first. Display second.

First check all parameters
(using kernel modules)

Then compute everything that can be computed
(idem)

If no error was found, display the interface,
otherwise gracefully show a nice error message

Summary

Summary

Keep the black box mechanism in mind
Build that great library you'd love to use !
Asemble components like Lego® elements

Use coding conventions
It's a treat to yourself in the future
It's a sign of respect to your colleagues today

Instrument your code as much as possibe

The worse will always happen at the worst
moment !

References

Expert

PL/SQL Practices « Expert PL/SQL Practices »
Apress edition

ISBN13: 978-1-4302-3485-2
August 2011

Thank you for your attention !

Stephan.Petit@cern.ch

www.cern.ch

	Slide Number 1
	Oracle Tutorials�PL/SQL Best Practices
	PL/SQL Best Practices - Agenda
	Why Best Practices ?
	Why Best Practices ?
	The Black Box Paradigm
	The Black Box Paradigm
	The Black Box Paradigm
	The Black Box Paradigm
	The Black Box Paradigm
	The Black Box Paradigm
	PL/SQL & Black Boxes
	PL/SQL Modules Classification
	PL/SQL Modules Classification
	PL/SQL Module Grouping
	Coding Conventions
	Slide Number 17
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Why Coding Conventions ?
	Coding Conventions
	One Set of Coding Conventions
	Coding Conventions: Case
	Coding Conventions: Comments
	Coding Conventions: Naming
	Coding Conventions: Indenting
	Coding Conventions: Indenting
	Coding Conventions: Indenting
	Coding Conventions: Indenting
	Coding Conventions: Indenting
	Coding Conventions: Indenting
	Coding Conventions: Parameters
	Coding Conventions: Parameters
	Coding Conventions: Constants
	Coding Conventions: Dynamic Code
	Coding Conventions: Metadata
	Error Handling
	Error Handling
	Error Handling: Trapping
	Error Handling: Reporting
	Error Handling: Reporting
	Error Handling: Reporting
	Error Handling: Reporting
	Error Handling: Reporting
	Error Handling: Recovering
	Error Handling: Recovering
	Error Handling: Recovering
	Error Handling: Recovering
	Error Handling: Procs vs. Funcs
	Error Handling: Display Modules
	Summary
	Summary
	References
	Thank you for your attention !
	Slide Number 60

