

ORC process for reducing power consumption at the energy recovering electron cooler system for FAIR

Kurt Aulenbacher, Helmholtz-Institut Mainz (HIM) 24. October 2013

- HIM is a joint venture between GSI & University of Mainz
- HIM-section: Accelerators & Integrated Detectors (ACID)
- One project: FAIR/HESR related research (electron cooler) (HESR consortium - leading institute: Forschungszentrum Jülich)

Kurt Aulenbacher, Helmholtz-Institut Mainz (HIM) 24. October 2013

Outline

- 1. Energy recovering accelerators
- 2. Example: Electron coolers
- 3. ORC as a (potential) solution for a special problem in electron cooling

Basic types of particle accelerators

Recirculating Linacs:

~1980's: used for **cost/power** reduction

in c.w. -machines (Mainz, JLAB)

>2000: New Principle: Energy recovery Linac:

Helmholtz Institute Mainz

Figure 6 Schematic of JLab 10-kW IR/1-kW UV FEL upgrade configuration

L. Merminga et al.

Annu Rev. Part. Sci. 53:387-429 (2003)

 TABLE 3
 System parameters of the JLab IR and UV FEL upgrade

Parameter	IR FEL Upgrade	UV FEL
Beam energy at wiggler	80–210 MeV	200 MeV
Average beam current	10 mA	5 mA
Bunch charge	135 pC	135 pC
Bunch repetition rate	74.85 MHz	74.85 MHz
Normalized emittance (rms)	13 mm-mrad	5-10 mm-mrad
Bunch length at wiggler (rms)	200 fs	200 fs
Peak current	270 A	270 A
FEL extraction efficiency	1%	0.25%
$\delta p/p$ before wiggler (rms)	0.5%	0.125%
$\delta p/p$ after wiggler (full)	10%	5%
CW FEL power	>10 kW	>1 kW

Note: beam power in Interaction region is 2MW But RF-power needed is only 100kW

Comparing Ring and ERL:

- → The ring recirculates particles, the ERL recirculates also the energy
- → In ERL, each particle passes the interaction region only once
- → Much stronger interaction possible in ERL-mode!
- → ERL emittance in stationary equilibrium much better Potentail large scale Application: eN-Colliders or advanced light sources with GW-beam powers

MAMI & MESA at IKP-Mainz

Helmholtz Institute Mainz

MESA-Layout

Lattice inspired by CERN-LHeC test facility appraoch

Similar - but also different: Electron coolers

Condition: $v_{ion}=v_{elec} \rightarrow relativistic-limit:: E_{ion}=(m_{ion}/m_{el})*E_{el}$

50Tm HESR-ring at FAIR

Helmholtz Institute Mainz

Full antiproton energy of HESR ~14GeV →Electron beam energy max. 8MeV Beam power for efficient cooling 4-24 MW

igure 1: Schematic view of the HESR. Positions for injection, cooling devices and experimental installations are idicated. The upper straight is housing electron cooler, stochastic kickers, and space for a future upgrade. The lower

3D design of COSY Cooler

Helmholtz Institute Mainz

New cooler at COSY/Jülich

Designed by Budker Institut Novosibrisk for FZ Jülich. (in commisioning, first Cooling of 200MeV protons Sunday, 20.10. 2013

- -"magnetized beam"
- -2MW of beam power

2MV cascade transformer

Each section contains;

- high-voltage power supply +/- 30 kV;
- power supply of the coils of the magnetic field (2.5 A, 500 G);
- section of the cascade transformer for powering of all electronic components;

33 high-voltage section

8MV HESR cooler

HESR cooler: solenoid channel problem & turbine concept

- Solenoids must be powered by floating power supply.
- Turbines for U>2MV → Suggestion of BINP-Novosibirsk: 60kV/Turbogen (400Watt)
- Not realized for Jülich 2MV-cooler due to unreliability of Turbogen (status 2009)
- 2012: ACID contacts German company DEPRAG: Offer for 5kW Turbogens, high reliability
 (V. Parkomchuk: Each 5kW Turbogen may excite 500kV Cascade transformer)

Two 5kW Turbogenerators have been ordered, delivery 11/2013 (Design differs from catalogue illustration, 8000 hour operation specified)

Helmholtz Institute Mainz

Turbine powered floating power generator prototype

Helmholtz Institute Mainz

Goal: Multi-MV stack

Technical challenges:

- Using SF6 as fluid is desirable (Turbines not optimized)
- Kompressor for expansion turbines is not energy efficient

New idea: SF6 is gas with capabilities as ORC medium

Goal: Multi-MV stack

Helmholtz Institute Mainz

igure 1: Schematic view of the HESR. Positions for injection, cooling devices and experimental installations are idicated. The upper straight is housing electron cooler, stochastic kickers, and space for a future upgrade. The lower

New idea: SF6 is gas with capabilities as ORC medium: Research study for layout of plant in the near future!

HESR cooler: timeline 2013-18

- 2 Turbogenerators ordered, delivery to BINP end of 2013
- Challenge: Convert Turbogen to SF6 medium/energy efficiency: full scale device requires ~1.5MW of electrical power for compressor.
- Negociations with Universities on facing these challenges

~40cm

Main Projects/Milestones for the mid term future together with partners/collaborators:

2014- Operation/Optimization of Turbogenerators using SF6 2016 explore using Organic Rankine Cycle (ORC) instead compressor	(TU-collab)
→ reduce el. energy consumption by order of magnitude	(TU-collab)
2014: Demonstration of Turbo powered HV generator	(BINP, FZJ)
2016: Study/design of full scale SF6 gas handling system	(Industry)
2016: Decision on feasibility of concept	(BINP,FZJ)
2017: Technical design report for full scale cooler	(BINP, FZJ)

Alternatives are being studied in parallel!

Thank you for your attention