

Energy Saving

an example of a test facility upgrade with pulsed magnets instead of DC magnets, saving 90% of energy consumption

Jean-Paul Burnet & Konstantinos Papastergiou
CERN Technology Department | Electrical Power Converters

Contents

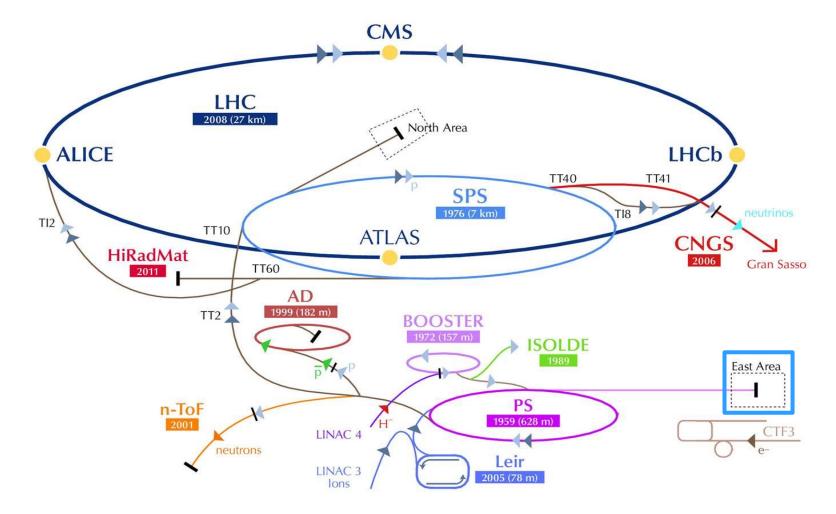
- 1 Introduction
- The East Experimental Area at CERN
- Energy Requirements of the East Area
- 4 Consolidation of Power Electronics and Magnets
- 5 Energy Saving using pulsed magnet operation
- 6 Conclusions

Special thanks to all Contributors: Jonathan COTTET (original presentation), Lau GATIGNON, Ilias EFTHYMIOPOULOS, Davide TOMMASINI, Dominique BODART, Gilles LE GODEC, Jean-Luc BLANC, Denis ARNOULT, Mauro NONIS, Serge DELEVAL, Rende STEERENBERG, Helfried BURCKHART, Bernard MULTON

Introduction

Electricity at CERN

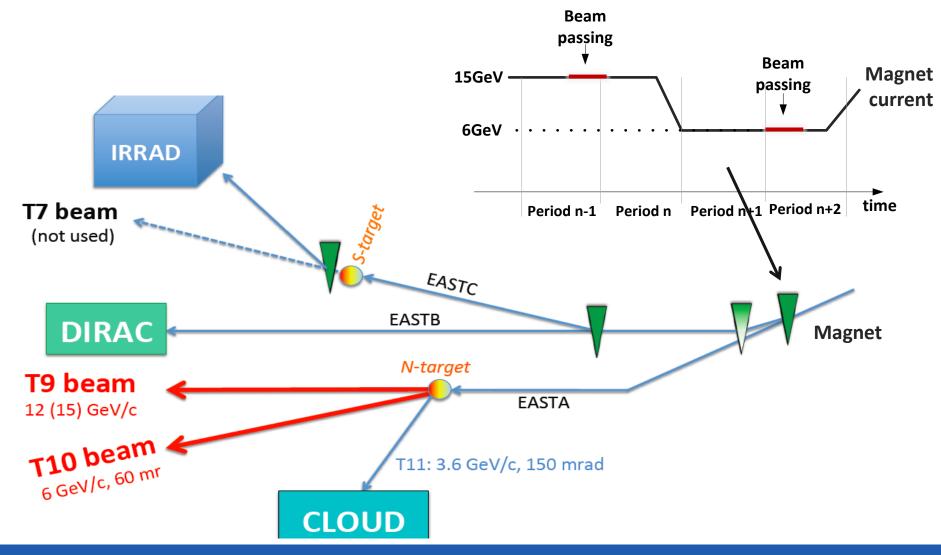
- Energy consumed in the year 2011: 1.2TWh
- An upwards Electricity price trend is foreseen
- An increase of the consumption is expected


CERN Energy Coordinator: "Improve Energy Efficiency"

East Experimental Area: a good candidate

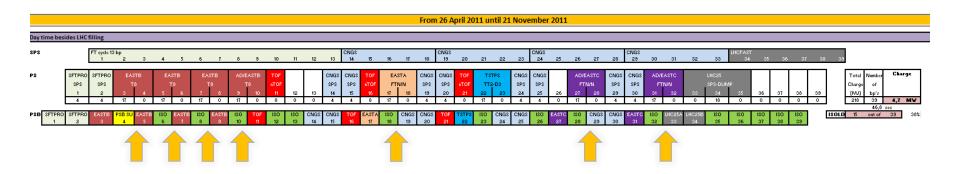
- Old installation consolidation programme foreseen in 2018
- Evaluation of energy balance of the PS EAST area on-going
- Use it as a model for other projects!

The East Experimental Area


The East Experimental Area

- Beam T7 can be operated as :
 - a secondary test beam (<10 GeV/c) or
 - as an Irradiation facility with primary proton beam
- T8 is a primary proton beam for DIRAC exp. (up to 2 10¹¹ p+/cycle)
- T9 is secondary test beam (<15 GeV/c at 0 mrad production angle)
- T10 secondary test beam (<7 GeV/c at 60mrad production angle)
- T11 can be used as
 - test beam (<3.6 GeV/c at 210 mrad) or</p>
 - as a very large spot (almost 2x2 m2) hadron beam (CLOUD experiment)

East Area Beam Lines



Duty cycle of East Area installations

A typical Super-cycle at CERN 46.8s (39 cycles of 1.2s)

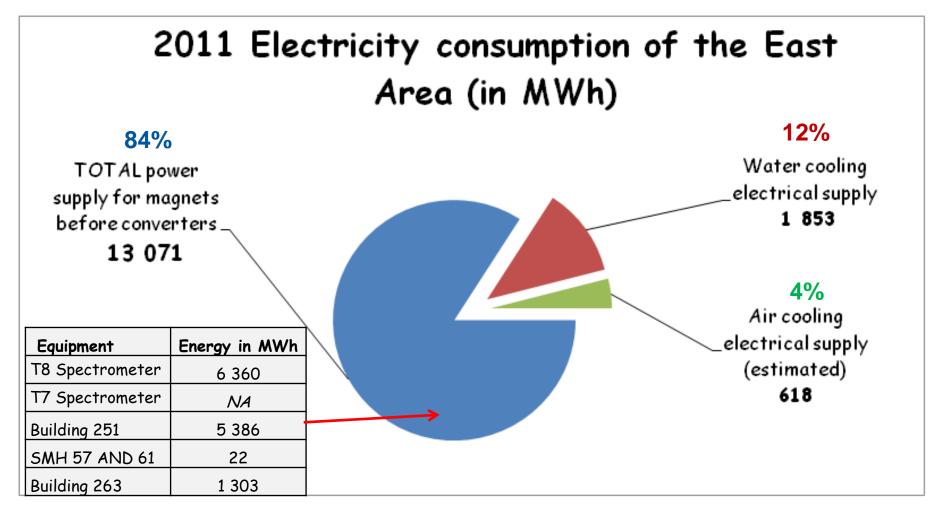
Zone	Time in PS Supercycle
EASTA	4301 h
EASTB	4044 h
EASTC	3274 h

- Number of "EAST" area cycles: 7
- Beam takes 400ms to 700ms to pass through the beam line
- Particles in East Area beam lines: 3.5s over 46.8s of the super-cycle!
- "duty cycle" is only 7.5 %

East Area
Energy and Water Consumption

Energy Consumption

- The East Area consumes 15GWh per year after
- PS (55GWh/year) and the Booster (25GWh/year)



The East Area consumes energy continuously whereas it is used only during 7.5% of the PS Supercycle time

- Electricity consumption appears in the form of:
 - Magnet thermal power losses
 - Water and Air Cooling pumps
- But also indirect consumption of resources:
 - Water supply to compensate for evaporation in cooling towers
 - De-ionised Water and other cooling fluids

Energy Consumption: detail

Key loads

- Identified loads where potential savings can be gained
- Calculated cost of energy loss and cost of cooling
- Examine alternative, energy saving magnet operation

EAST AREA ENERGY CONSUMPTION in 2011			
	Energy in GWh	Price in kCHF	
Electrical energy	8.0	406	
Total cooling fluid		75	
TOTAL energy cost		480 kCHF	

East Area Consolidation Programme

East Area Consolidation Project

A consolidation programme includes:


- A thorough maintenance/renovation of the infrastructure
- A redesign, manufacture and installation or restoration of key equipment (magnets, power converters, power network).

Facilities in East Area after the consolidation:

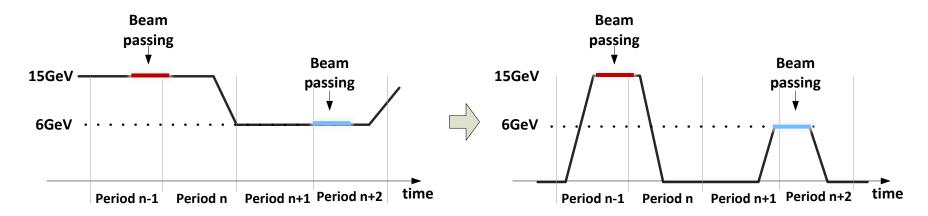
- T8: Irradiation facilities for protons and "mixed field"
- T9: Test beam facility and CLOUD experiment
- T10: Test beam facility mainly for the ALICE collaboration

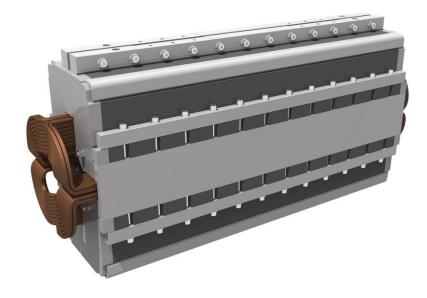
East Area new layout

Future Energy Consumption

- Assuming future operation in continuous mode
 - The total energy cost will rise by more than 25%
 - The cooling fluid (mainly water) costs will rise by 25%
- Despite fewer users the operating cost is higher

	Future (3 beam lines)		Present (5 beam lines)	
	Energy in GWh Price in kCHF		Energy in GWh	Price in kCHF
Electrical energy	10.9	552	9.0	406
Total cooling fluid		102		75
TOTAL energy cost	653 kCHF			480 kCHF


Unless operation changes to "pulsed mode"...


Pulsed operating mode: Magnet current is reduced to zero when no beam is present in its vacuum chamber (as opposed to the continuous operating mode)

Pulsed (or cycling) operation

- Pulsed operation requires a di/dt through the magnet
 - 23/55 magnets do not support cycling due to a solid steel yoke
 - Eddy currents would heat up the yoke material

Magnet refurbishment cost

Solution Elaborated by the Magnet Groups at CERN

 replacement all the solid steel yokes by new laminated yokes while keeping the present coils

Туре	Estimated Price magnet (kCHF)	Number of magnets	Total cost per family (kCHF)
MDX	20	6	120
M100	70	2	140
M200	100	5	500
Q100	50	5	250
Q200	70	4	280
Q74	40	1	40
	Total	23	1.3 MCHF

- Total magnet refurbishment cost is 1.3MCHF
- Considerable cost could it be finance by energy saving?

Pulsed Operation: consumption

FUTURE OPERATION (HYPOTHESIS)					
Zone	number of cycle per Supercycle duration in 2011 (in hr) duty cycle				
Total - East	6	4301	15%		
EASTA	2	4301	5%		
EASTA on T9	1	4301	2.5%		
EASTA on T10	1	4301	2.5%		
EASTB	4	4044	10%		

OTAL energy cost		40 kCHF		653 kCHF
Total cooling fluid cost		6.2		101.5
Total electricity consumption	662	33.7	10 853	551.8
Air cooling electrical consumption	26	1.3	431	22
Water cooling electrical consumption	79	4.0	1 294	66
Total magnet electrical consumption	557	28.3	9 128	464
	Energy in MWh	Price in kCHF	Energy in MWh	Price in kCHF
	Pulsed Mode		Continuous Mode	
CALCULATION R	ESULTS: ENER	GY-WATER CO	NSUMPTION	

Pulsed Operation: Impact

- Pulsed operation will raise the project costs:
 - Magnet consolidation of solid steel yokes: 1.3MCHF
 - Power Converter replacement costs will increase by: 1.5MCHF
 - ⇒ Power converter consolidation was already scheduled
 - Electrical distribution costs will be lower
 - 2x2MVA transformers are sufficient to power the EAST Area (currently 8 transformers)
- BUT pulsed operation will result in recurring savings:
 - 10GWh/year
 - 600kCHF/year
- ...and a much smaller carbon

from the East Experimental Area

AND pay back of the project costs will occur in 5 years

Conclusions

- Energy Audits, a useful tool for identifying potential for saving
- The PS East Area is a prime candidate
 - Continuously energised BUT used <4% of physics operations time
 - DC powering of magnets * unnecessary cooling requirements
- Pulsing the magnets drastically reduces consumption
 - Energy requirement from 11GWh to 0.6GWh per year
 - Saving of 600kCHF per year
- Great example of a self-funded project
 - Extra cost of approximately 3MCHF but,
 - Short investment depreciation time approximately 5 years
- East Area is a model for other projects (e.g. North area)

