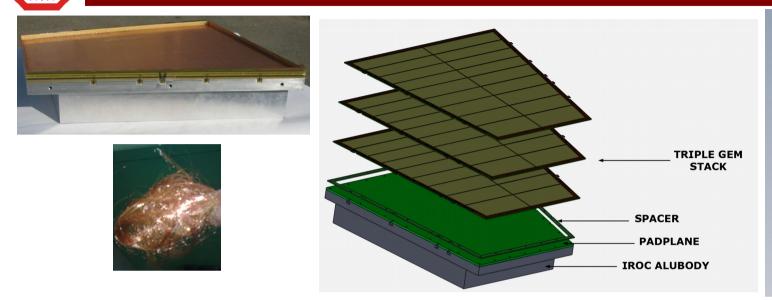
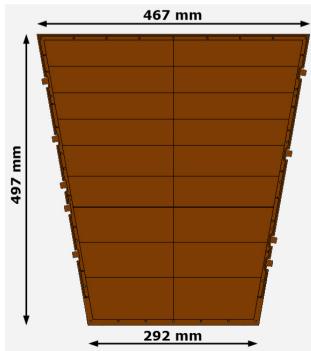
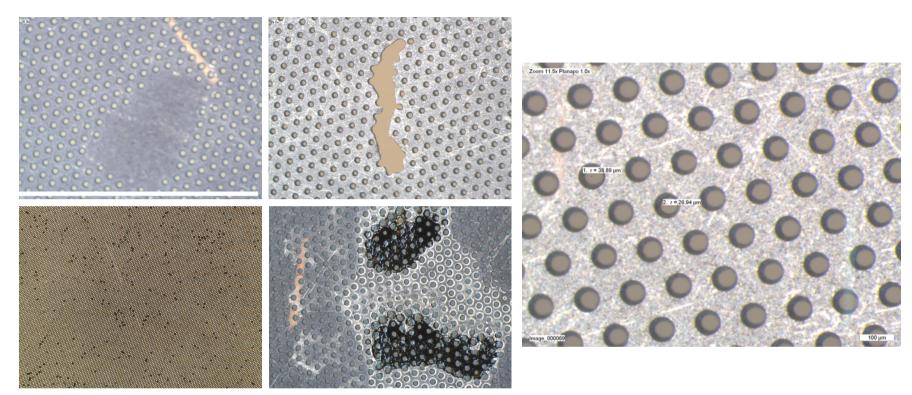
Quality control experience with foils of the ALICE TPC prototype

Piotr Gasik (TU München)

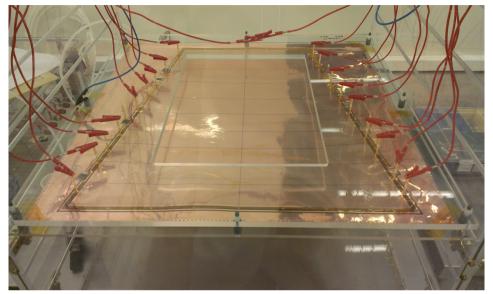

for the ALICE TPC Collaboration

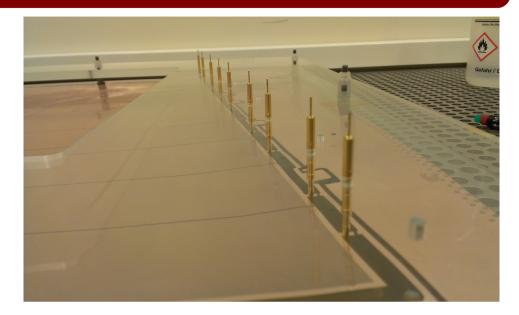

RD51 Collaboration Miniweek 22-24.04.2013, CERN

GEM Inner Read-Out Chamber prototype


GEM foils for IROC prototype:

- 3 single-mask large-size foils
- 18 sectors (top side segmented), ~100 cm² each
- Inner/outer diameter: 50/70-80 μm, pitch 140 μm
- 2mm frames (G-10 fiberglass) glued on bottom sides
- Thickness of spacer grid 400 μm
- Additional frame between padplane and bottom foil

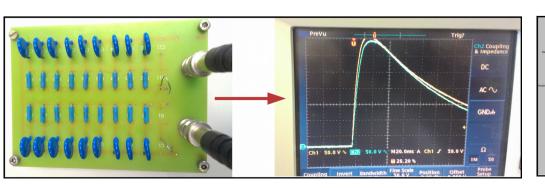

QA – Microscope Check

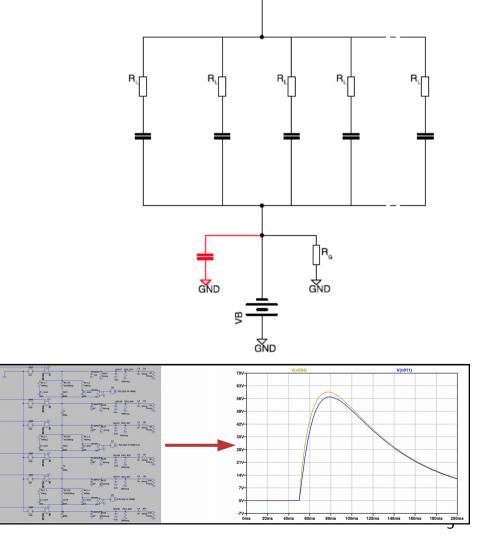


- Each foil is checked under the microscope
 - in search of larger defects
 - measurement of holes size/pitch

QA – HV tests

- Foil in box flushed with N₂
- 1st step: each sector is ramped up to 550 V in steps: 300, 400, 450, 500, 550 V
 - leakage current measured at each step (max. 5 nA)
 - trips counted at each step (max. 3)
- 2nd step: ramping up directly to 550 V
 - leakage current measured
 - trips counted
 - test passed if sector stable for 3 min
- Tests performed at each step of assembly




HV Supply

R,

GND

- Loading resistors
 - 10 M Ω for top (G1) and middle (G2) foils
 - $1 M\Omega$ for bottom (G3) foil
- Each side powered independently (6 HV channels)
 - ΔV across the GEM must not increase after the trip
 - Top side must discharge faster than bottom
 - Crucial role of parasitic capacitances (cables!)
- Grounding resistors
 - **G1T** \rightarrow 5 MΩ; **G1B** \rightarrow 10 MΩ
 - **G2T** \rightarrow 5 M Ω ; **G2B** \rightarrow 10 M Ω
 - **G3T** \rightarrow 3.3 MΩ; **G3B** \rightarrow 3.3 MΩ
- Tested with GEM model and simulations

GND

GND

HV Settings

"Standard" settings (100% for Ar/CO₂ – 70/30)

Transfer Field 1 = 3730 V/cmTransfer Field 2 = 3730 V/cmInduction Field = 3730 V/cm $\begin{array}{l} {\rm GEM1} = 400 \ {\rm V} \\ {\rm GEM2} = 365 \ {\rm V} \\ {\rm GEM3} = 320 \ {\rm V} \end{array}$

- Scaling factors: 69%, 70%, 71%, 72%, 73% (scaling both GEMs and Fields)
- Resulting gains: $\sim 1500 6000$

"IBF" settings – 4x4 matrix

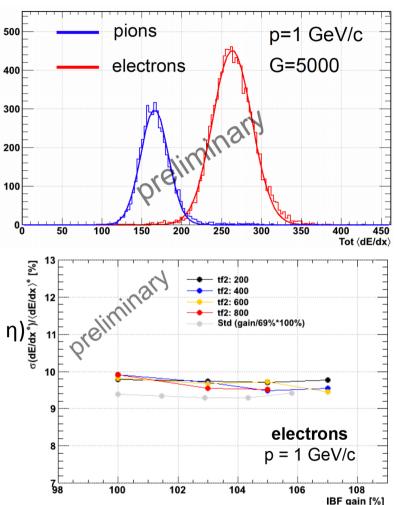
Transfer Field 1 = 3800 V/cmTransfer Field 2 = 200 V/cmInduction Field = 3800 V/cm

GEM1 = 225 V GEM2 = 235 VGEM3 = 285 V

- Scaling factors: 100%, 103%, 105%, 107% (scaling only GEMs)
- Transfer Field 2: 200, 400, 600, 800 V/cm
- Resulting gains: \sim 900 6600

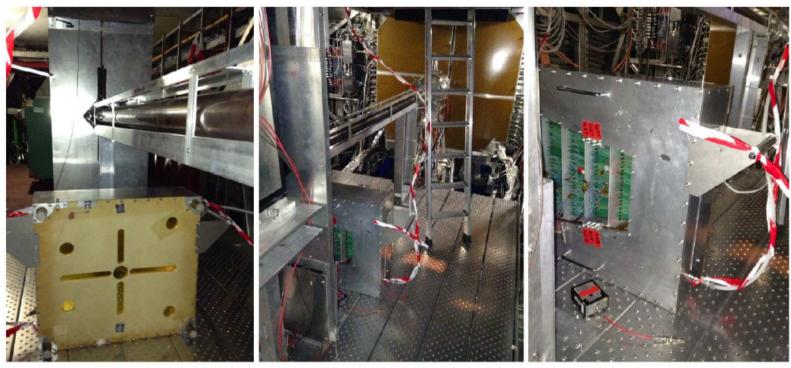
PS beamtime (Nov./Dec. 2012)

<u>PS East Areas – T10 beamline</u>

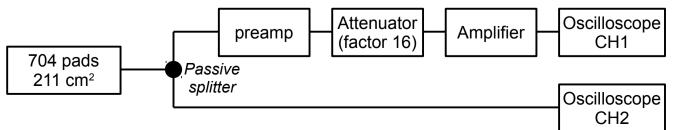

- Average beam rate: 4 kHz
- Beam: 1 6 GeV/*c* e[±], π[±], p
- GEM settings: "standard" and "IBF"
- Gas mixture: Ne/CO₂ (90/10)
- Additional detectors for PID: Cherenkov and Pb-glass

dE/dx measurements

- Gain equalization using tracks
- No T/P correction
- Truncated mean of cluster charge (5 70 %)
- For comparison: IROC only in ALICE TPC $\sigma_{e}/E \approx 9.5 \%$ (for high η)

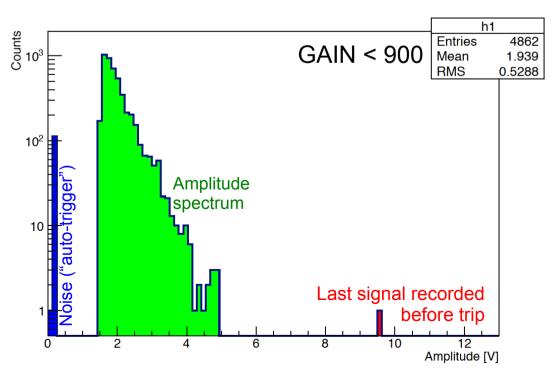

TRIPS:

- 8 trips during PS beamtime
- No harm to the foils
- Always included GEM1
- Trips occurred at the highest absolute potentials (3.2 kV at GEM1) "IBF" settings
- Didn't occur at similar gains with "standard" configuration (lower absolute potentials)
- All trips during the beam
- 7 electronic channels damaged (in 3 trips) no signature on padplane!

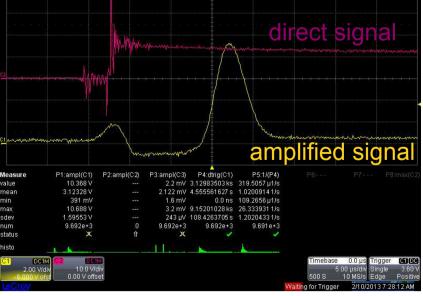


LHC test: ALICE p-Pb beamtime

- Chamber installed on A-side underneath LHC beampipe ($\eta \approx 2.6$)
- > 3 weeks under LHC conditions
 - 200 kHz interaction rate (10 kHz during first couple of days)
 - Particle rate ~ 5000 kHz per unit
- Standalone readout: waveforms, discharges, trips
 - Trig. Rate < 10 Hz (recording highest signals)



.


Trips @ LHC

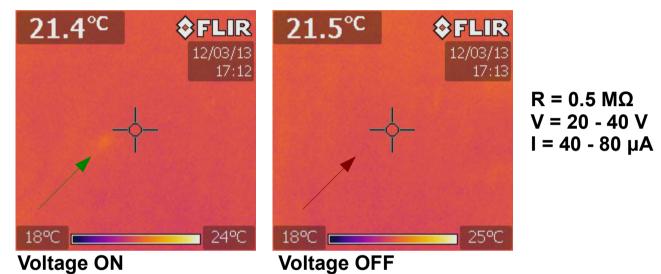
23 trips occurred

- 20 at lowest "IBF" settings, 2 at "standard", 1 while ramping up
- 21 with beam, 2 without _
- No correlation found with beam conditions
- All included G1
- 1st trip already while running with 10 kHz coll. rate
- 7 shorts developed! •
 - 1 x GEM1; 3 x GEM2; 3 x GEM3; —

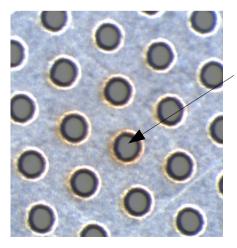
Example of the last signal before trip

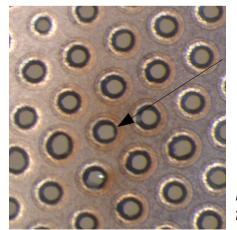
Shortened sectors vs. QA HV tests

- TOP GEM 1 short
 - Sec. $10 \rightarrow 50.3 \text{ k}\Omega$;
 - Sector OK before/after framing the foil
 - Peaks of high leakage current before mounting \rightarrow OK after some time
 - In this foil 3 other sectors were problematic (high ILEAK, trips) before framing
- MIDDLE GEM 3 shorts
 - − Sec. 12 → 6.6 MΩ; Sec. 14 → 2.5 MΩ; Sec. 16 → 0.5 MΩ
 - Sectors 14 and 16 were tripping (3x each) at "3min@550V" test before framing
 - Sectors OK after framing
 - Problems before mounting \rightarrow high leakage current (from U=400V) and trips < 500 V
 - Problem solved by applying the HV with opposite polarity foil OK
 - In this foil only 1 more sector was problematic before framing (trips)
- BOTTOM GEM 3 shorts
 - $\label{eq:eq:sec.12} \text{-} \text{Sec. 12} \rightarrow \text{75 k}\Omega; \qquad \text{Sec. 14} \rightarrow \text{265 k}\Omega; \qquad \text{Sec. 16} \rightarrow \text{600 k}\Omega$
 - Sectors were tripping at 550V before framing (no "3min" test)
 - Sec. 12 and 14. OK after framing
 - Sec. 16 high leakage current gone after several trips
 - Foil OK before mounting
 - In this foil only 1 more sector was problematic before framing (trips)


• Significant correlation between shortened sectors and problems from QA

0	0	0	0	Ì	0	0	•^	7
$\left \right $				_				
SI								
							//	
5								
1	0			1()		5	
	5-0			12	2		°	
	7			14	4			
	10			16	6			
	6	0	0		0	0		




Short identification

- Search for suspicious places (discharge spot)
- Identification:
 - Thermographic camera

• Irregular shape of inner hole \rightarrow black pieces (carbon?) sticking out

Here, in addition, light color pieces found nearby (photoresistive?)

• Final identification: discharge/explosion while burning with high current (see next slides)

Position of shorts

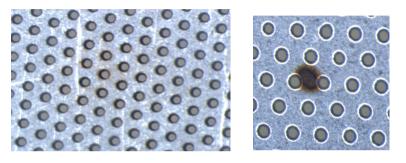
Shorts in MIDDLE and BOTTOM foils are in the same positions (± 0.5mm).

SECTOR 12:

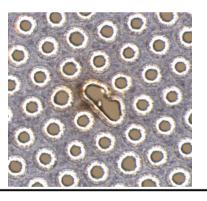
- 1st coordinate differs by 0.07 mm (measured with microscope+PC)
- 2nd coordinate: same ±0.5 mm (measured with microscope+ruler)

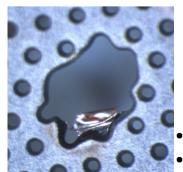
SECTOR 14:

- 1st coordinate: same hole-row
- 2nd coordinate: same ±0.5 mm


SECTOR 16:

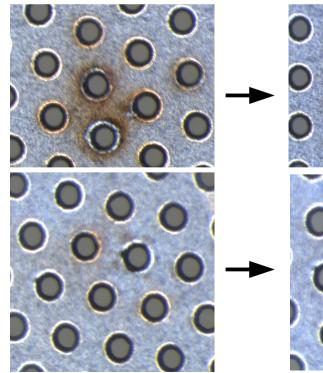
- 1st coordinate: short in the next next hole-row (< 300 μm difference)
- 2nd coordinate: same ±0.5 mm
- Alignment of shorts in both foils: discharge propagation?
 - In "IBF" settings TRANSFER2 field increases after the trip of PS (R_{LOAD} configuration)
 - 200 V/cm \rightarrow 1500 V/cm (not an amplification region (~ 4 kV/cm for Ne/CO₂)
 - May be enhanced if the tripping times (for different PS channels) differ
 - Depends also on the position of first discharge (middle or bottom foil)
 - BUT, first short in MIDDLE foil developed after the trip at "standard" settings
 - No signs on pads
- Shorts in G2 and G3 were noticed one by one (not at the same time after one discharge) but close together
 - propagated discharges started damaging (burning Kapton?) the hole which later transformed into the short (?)
 - produced together but one with high resistance, therefore skipped (resistance changed later on) (?)

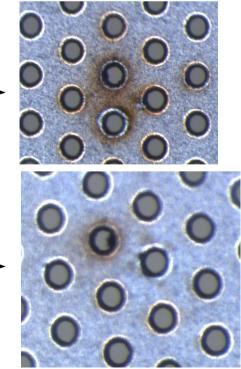

Schorts/Discharges vs. foil quality

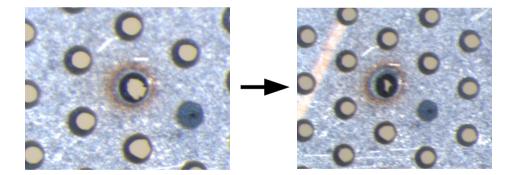

- Places, where discharge occured, were search all over the foils (TOP side only)
- Identification by brown spots around or nearby the holes

- Discharges from HV tests, LAB tests, 2 Beamtimes (PS+LHC)
- TOP GEM: 73 places (N_{min} = 0, N_{max} = 10; <N/sector> = 4; 40 trips at QA)
- MID GEM: 70 places (N_{min} = 1, N_{max} = 8; <N/sector> = 4; 62 trips at QA)
- BOT GEM: 124 places (N_{min} = 3, N_{max} = 20; <N/sector> = 7; 60 trips at QA)

ONE discharge found at the hole with a defect


Another discharge nearby the defect was found in one of the new foils (not yet used) Reason is rather clear (Copper sticking out at one side of the foil)




Fighting with shorts

Burning with high current

- Resistance change (>30 MΩ) after applying 20 30 V ($I_{LIMIT} = 1 2$ A)
 - usually "explosion" of short seen
 - more carbon in hole after burning procedure
- Leakage current "re-appear" with higher voltages,
 - usually trip around 50V (R_{LOAD} = 0)
 - "re-produce" a short with $R_{SHORT} \simeq 1 k \Omega$
- Procedure repeated several times per short → result always the same

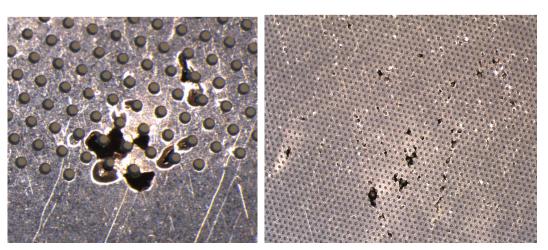
Fighting with shorts

Cleaning with CO₂ particles

- While fast decompression of CO_2 solid micro-particles are created
- Cleaning procedure \rightarrow several "shots", from close distance
- High pressure (high flux) leaves an imprint on the foil
- Hole seems to be cleaner, carbon is not visible
- Starting point: $R_s = 9.3 \text{ k}\Omega$
- Resistance of the short increases after each cleaning: 3.5...10...18...>30M\Omega
- Ramping up \rightarrow leakage current **decreases** after each cleaning
 - after 9 "shots", $I_{leak} = 0.7$ nA at 100 V (with $R_{LOAD} = 100 \text{ M}\Omega$)
 - usually $I_{LEAKAGE}$ < 0.5 nA at 550 V

Removing carbon with 30µm bonding wire

- Possible to remove only "big" pieces of carbon
 - Short not removed completely (although resistance may increase)
 - Low resistance re-appear after applying HV
- The hole may be destroyed


Fighting with shorts

Ultrasonic bath

- 2 foils (2 x 3 shorts) were treated this way
- Holes visibly cleaner
- 3 out of 6 sectors were cured
 - Leakage currents I_{LEAK} < 1 nA at 550 V (R_{LOAD} = 100 MΩ)

- After bathing and drying parts of the foils, which were dipped in liquid, are wrinkled
- Drying (24h in 60 °C) didn't help
- Effect enhanced by stretching?

- TOP Copper layer was destroyed in many places
- In most of those places one can observe that copper was "different" there: scratches, light reflected differently
- Micro defects in raw material?
- Effect of stretched and framed foil?

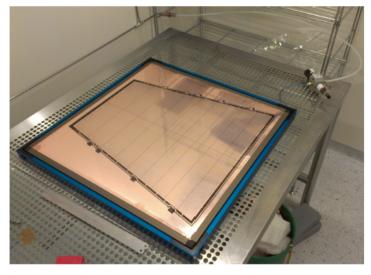
Summary

- First GEM-IROC prototype has been successfully built and commissioned
- Stability issues occurred during the test at LHC: 23 trips and 7 shorts developed
- 5 shorts in sectors with problems at QA HV tests
- Most of the problems from the first QA check were gone after stretching/gluing/<u>curing</u> procedure (curing the glue in 70°C for 24h) <u>but probably came back later on, causing the problems</u>
 - One sector had a short which could be burned with several μA current
- Defects in foils seem to be less important for their stability
 - Shorts and discharges found at/near the "proper" holes
 - One discharge found nearby the defect
 - New foils experience \rightarrow discharge by piece of copper sticking out from the foil
- Burning the shorts was not successful: **shorts must be avoided!**
- Additional cleaning of the foils
 - Cleaning methods, like ultrasonic bath or CO₂ particles may be effective but dangerous
 - Pieces of light dirt found nearby two shortened holes (pollutant, chemicals?)
 - New foils: 7 sectors with HV problems (high I_{LEAK} or tripping) \rightarrow send back to CERN for cleaning
- HV tests of the foil seem to be crucial

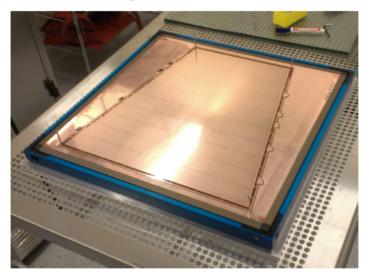
Outlook

- QA HV tests
 - Precise I_{LEAK} measurements (pA precision, instead of >0.1 nA)
 - Foil training? (leave the foils tripping for 24h) uncontrolled procedure
- Discharge propagation:
 - 6 independent HV channels may not trip simultaneously
 - In present configuration, TRANSFER2 increases after the trip
 - Passive Voltage Divider (resistor chain) \rightarrow fixed values of fields
 - Active HV Divider is now taken into account
- New step of QA: tests with highly ionizing particles

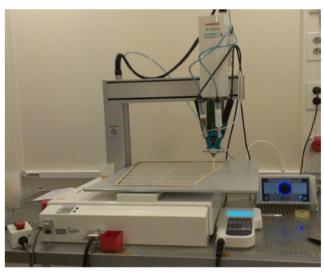
THANK YOU

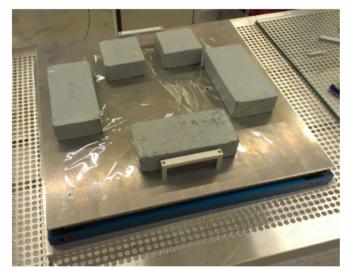

ALICE TPC Upgrade

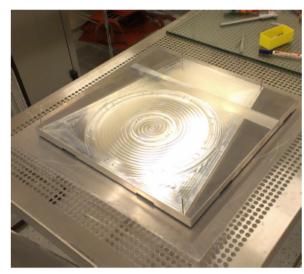
- ALICE TPC will operate at a factor 100 higher readout rate after LS2
 - 2 MHz in p-p and 50 100 kHz in Pb-Pb collisions
 - No gating and continuous readout
- GEMs as an alternative for MWPC readout
 - No issue with rate capability
 - Possibility to efficiently block ions
 - Lower (effective) gain 1k 2k, since signal is produced by electrons (fast) + lower noise
- Issues for GEM upgrade
 - *dE/dx* resolution for PID (Nov./Dec. 2012)
 - Stability under LHC conditions (Jan./Feb. 2013)
 - Gain stability (charging-up, rate dependence)
 - IBF (ongoing measurements and simulations)
 - New electronics (polarity, continuous readout)

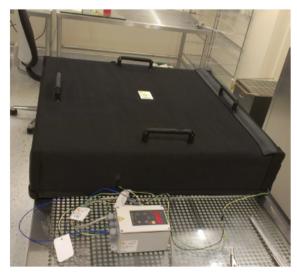


Gluing procedure

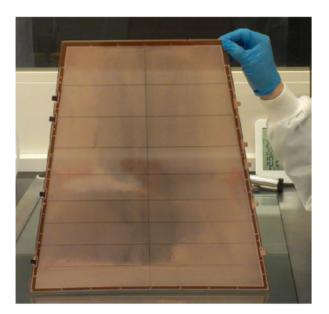

1. Stretching (DEK frame, 10 N/cm)

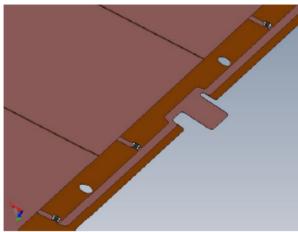

4. Foil glued onto the frame


2. Glue dispensing (ARALDIT 2011)

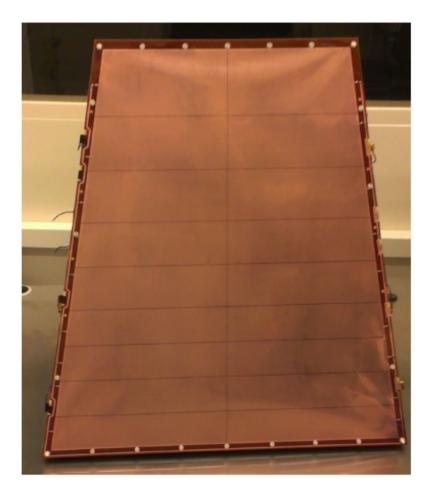

5. Counterweight for gluing

3. Alignment tool



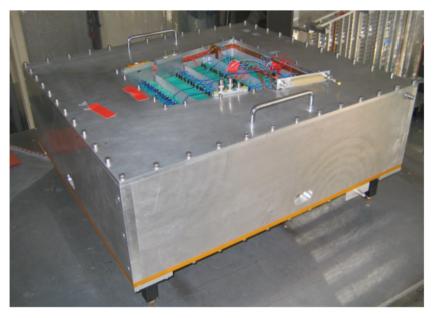

6. Curing the glue (70 $^{\circ}$ C for 20h)

Framed GEM

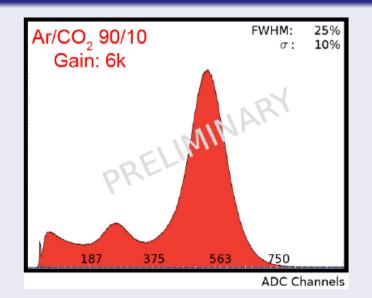


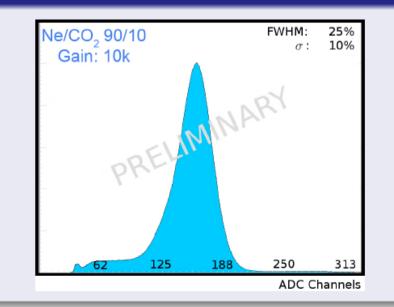
- raw material is cut off
- HV tests \rightarrow foils are more stable after gluing/heating procedure
- loading resistors (SMD) are soldered
- flaps used for HV connection (with Kapton wires) after mounting GEMs on the Alubody

Assembled Prototype


GEM-stack mounted on IROC-Alubody

- After mounting, "wrinkles" appeared near parallel edges of trapezoid.
- Wrinkles on the foil may result in inhomogeneities in the gain.
- Current method of fixing the foils seems to be not sufficient and will be improved.


Commissioning in the LAB

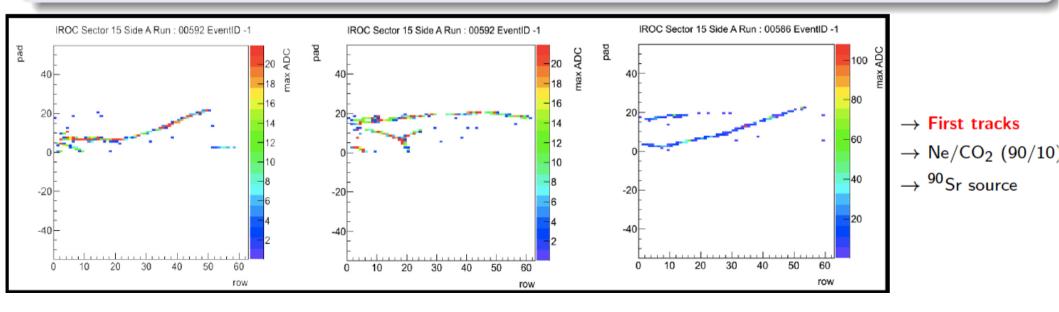


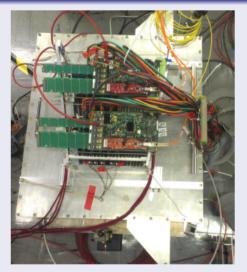
IROC in the testbox with Field Cage

- Drift field: 400 V/cm
- Drift length: pprox 11.5 cm
- Readout: ca. 250 pads (out of 5500) connected to the preamplifier (\sim 75 cm²)

First ⁵⁵Fe spectra

Preparation to the testbeam

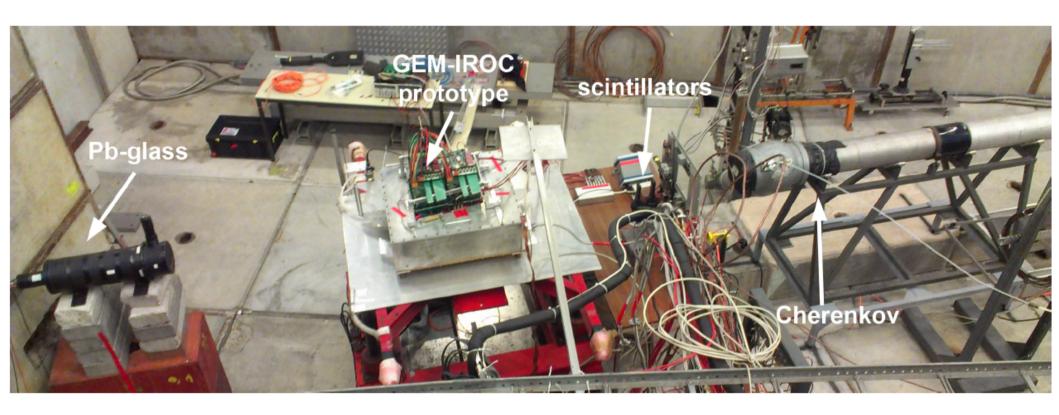

Readout

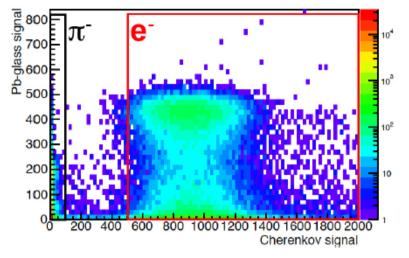

• 10 Front-End Cards (borrowed from the LCTPC Collaboration via Lund):

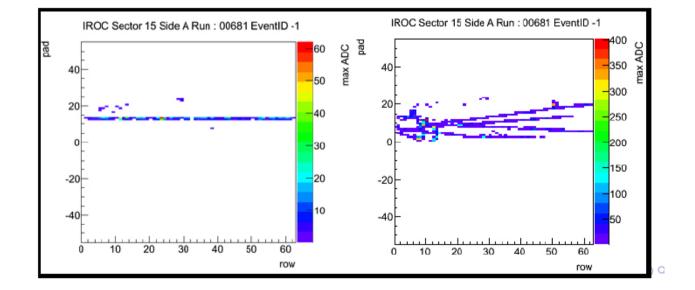
- 16 to 18 pads (size $4 \times 7.5 \text{ mm}^2$, 320 cm² in total) on 64 pad rows
- region covered \sim 6 cm wide
- average noise (ENC) at the level of 500 600 e $^-$

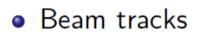
EUDET Front-End Card:

- programmable charge preamplifier: PCA16
- digitization and signal processing: ALTRO
- same backplane and readout as in ALICE




PS TESTBEAM



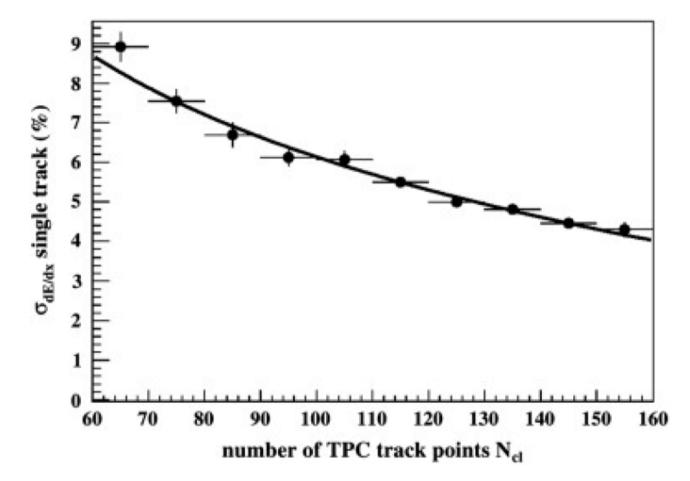

PS TESTBEAM

Pb-glass signal vs. cherenkov signal

 Separation between pions and electrons (Pb-glass vs. Cherenkov)

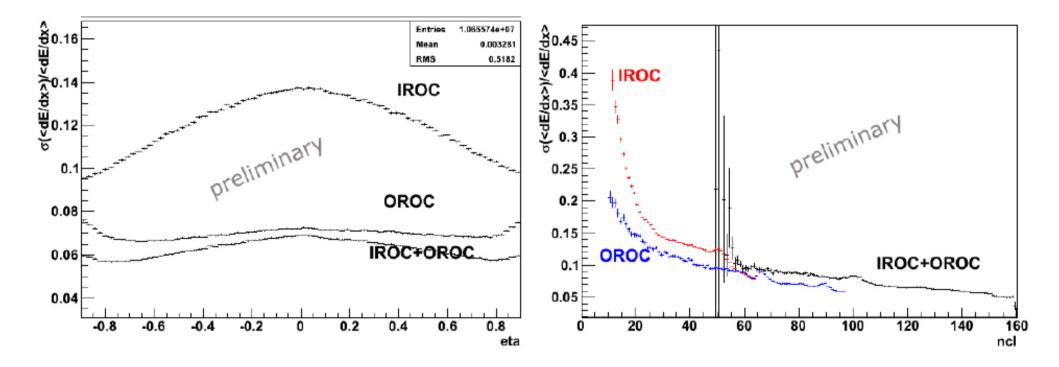
TRIPS @ PS

1 G	1 GeV/ c , negatives					
#	Settings	Gain	U _{G17} (V)	Channel		
1	107% IBF, 600 V/cm 107% IBF, 800 V/cm	5.5 k	3197	G1T		
2 3	107% IBF, 600 V/cm	6.5 k 5.5 k	3237 3197	G1, G2 G1, G1		

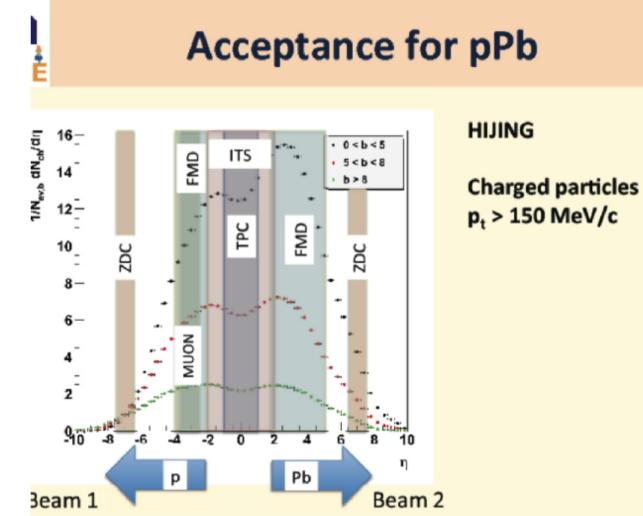

#	Settings	Gain	U _{G1T} (V)	Channel
4	105% IBF, 400 V/cm	2 k	3142	G1T
5	105% IBF, 800 V/cm	3 k	3222	G1
6	107% IBF, 400 V/cm	4 k	3197	G1
7	107% IBF, 400 V/cm	4 k	3157	G1, G2

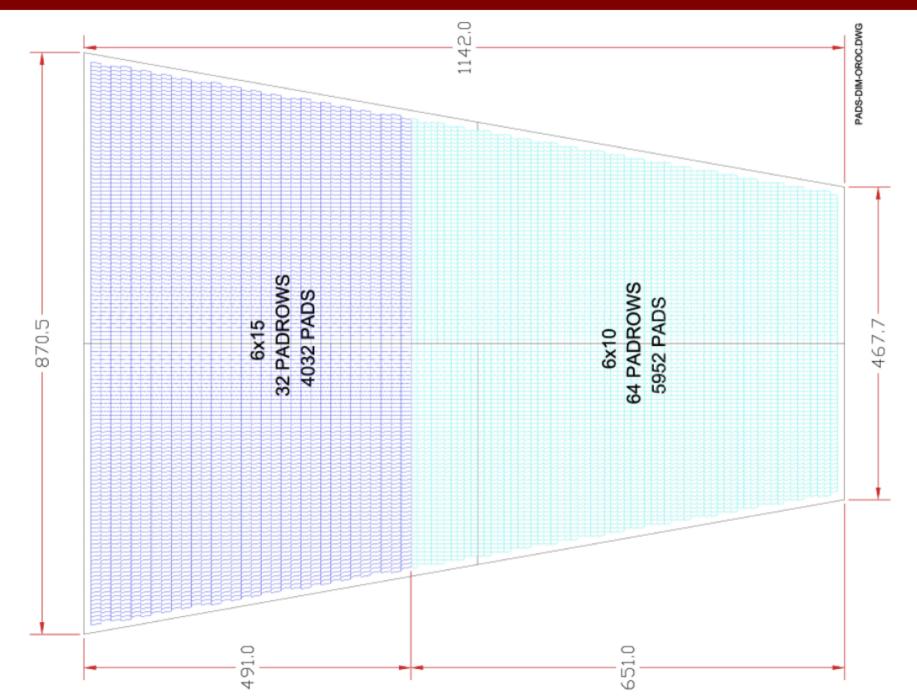
#	Settings	Gain	U _{G1T} (V)	Channel
8	100% IBF, 600 V/cm	1.8 k	3145	G1

- 8 trips during PS beamtime
- No harm to the foils
- Probably always started from GEM1
- Trips occurred at the highest absolute GEM1 potentials (≈ 3.2 kV) (voltage across GEM1 – small, ≈ 235 V)
- Didn't occur at similar gains with "standard" configuration (lower absolute potentials)
- All trips during the beam
- 7 electronic channels damaged (in 3 trips) no signature on padplane!


ALICE dE/dx vs. track size

W. Yu, Nuclear Instruments & Methods In Physics Research A (2012), http://dx.doi.org/10.1016/j.nima.2012.05.022


ALICE dE/dx resolution estimation


LHC Conditions

- Prototype at rapidity η ~ 2.6 (2.2-3.3)
- Assume multiplicity ~25 for p-Pb, and 200 kHz interaction rate
- Particle rate ~5000 kHz per unit, ~5 cm tracklets per pad row
- 20000 kHz per unit in upgrade scenario, ~1 cm tracklets per pad row
- Comparable!

