Update on the integration of SRS into the ATLAS DAQ environment

A. Zibell Ludwig-Maximilians-Universität München

RD51 mini week 23.4.2013

Installation of prototype chambers in ATLAS

ATLAS data acquisition chain

SRS (Scalable Readout System, RD51 Development)

SRU (Scalable Readout Unit)

Main tasks:

- Reception and distribution of Level1 triggers, LHC synchronization (TTC)
- Event Counter
- Bunch Counter
- Clock Phase
- Bunch Counter reset
- Event Counter reset
- Detector data collection and event building (DTCC)
 (BCID, EVID, ..., Data)
- Data transmission to ROS PC via SLINK
- Slow control / DCS / Data preview via Ethernet:

Register setting on APV, FEC, SRU, ..

TTC interface (Trigger, Timing, Control)

- Communication with standard ATLAS trigger electronics ("TTC-Crate", ...)
- Receives L1A (Level 1 Accept) trigger, Bunch clock, triggertype, resets of eventcounter and bunchcounter as well as directed or broadcast configuration data

DTCC Link

(A. Martinez)

- Connects FEC Card(s) and SRU to transmit:
 - <= LHC Clock, L1 Triggers and configuration commands from SRU to FEC
 - => Detector- and configuration data at 640 Mbit/s from FEC to SRU
- Hot plug ability and automatic resynchronisation
- Support for 40 FEC cards (~82k channels with APV25 Hybrids)
- Conventional CAT cable with RJ45 plugs

SLINK implementation

(M. Della Volpe, R. Giordano, V. Izzo, S. Perrella)

- ATLAS transmits event data from ROD to ROS using SLINK
- Now: No longer need of a seperate HOLA daughter card (as used widely in ATLAS), due to implementation of the SLINK serialisation logic IP core in the Virtex6 FPGA (uses one of the FPGA's GTX transceivers)
- Successfully tested data transfer to a standard ROS PC.
 Valid ATLAS data frames are received.

DCS / Slow control

- Slow control via optical Gbit ethernet connection to the SRU
- SRU DCS requests are handled directly, packets for FEC and APV are forewarded via DTC links (ethernet switch functionality within SRU)
- Online access to parameters like run control, error conditions, ...
- Fine tuning of TTCrx, APVs, etc...
- Online results of calibration, data preview, ...

First data in ATLAS

- First run taken with ATLAS triggers (L1A 70 kHz)
- LHC bunch structure visible in data -> TTC and DAQ integration works
- Micromegas not included in general ATLAS DAQ ("standalone mode")
- => no Level 2 trigger information
- => no Synchronization with ATLAS muon tracks

Status and outlook

- Event building firmware on SRU is running and generates valid ATLAS ROD fragments from APV data
- Successful run-taking in standalone DAQ mode within ATLAS infrastructure
- LHC run period ended on 14.2.2013
 - => Setup complete aquisition chain at LMU/Garching cosmic ray facility
 - => Readout of large (O(m²)) Micromegas in ATLAS, once LHC restarts after 2014

L1 Micromegas chamber

- MAMMA L1 chamber arrived in Munich
- Active area: 0.92 x 1.02 m², 2048 channels
- Several successfull lab-runs with cosmics, reading FEC card via Ethernet

Garching cosmic ray facility

- Two full sized ATLAS BOS MDT muon chambers
- 10cm broad Trigger scintillators cover the full area of 4 x 2.2 m², segmentation along tubes as second coordinate
- Irion absorber and streamer tubes to allow energy cut via multiple scattering angle

Cosmic ray facility DAQ

- Measurement
 - Tracking of cosmic muons with Micromegas (SRU) and calibrated reference MDTs (Filar)
 - Trigger time and trigger pattern recorded using VME
- Goals
 - comparison of Micromegas tracks with MDT tracks
 - Analysis of residuals and determine position of strips as function of x
 - Analysis of Micromegas angular resolution (microTPC mode)
 - Check of the homogenity of the Micromegas chamber's efficiency and mechanical precision
- Three data streams have to be aligned:
 - VME crate data for trigger, trigger timing and trigger hit pattern
 - FILAR card data from the MDT tubes
 - ROBIN card data from the Micromegas/SRS
- All neccessary drivers and software, including ATLAS tdaq, installed on a 4-core machine, running scientific linux 5
- Estimated time for measurements: 2 4 weeks

Current issues

- Non-zero suppression firmware with DTC support works flawless
- Zero-suppression firmware without DTC support (direct ethernet connetion) works
- Zero suppression firmware with support for DTC links shows "bunches" of missing events in the raw data stream.
- Analysis of raw binary data shows a repeating sequence of ~25 good events, ~40 missing, ~25 good events, ~40 missing, etc...
- Under investigation together with FEC firmware developers

Standard ATLAS Event Data

- L1A trigger (from **TTCrx** (ATLAS), NIM input (Lab) or slow control (debug)) stored in FIFO memory
- ATLAS Event fragment generated for each trigger
- Header and Trailer information to identify Detector, Run and Event metadata
- Converted data from the APV chips will be zerosuppressed by the FEC and then written (via DTC link) to FIFO memorys in the SRU FPGA
- Full event fragment is formed and sent out via SLINK to the ROS PC

	32 bit
1	Begin of Fragment
2	Start of Header
3	Header Size
4	Format Version
5	Source Identifier
6	Run Number
7	Ext. L1 ID
8	BCID
9	L1 Trigger Type
10	Detector Event Type
	(ROD fragement payload)
N – 4	Status Element n
N – 3	Number of Status Elements
N – 2	Number of Data Elements
N – 1	Status Block Position
N	End of Fragment

22 hit

Upcoming plans

- Mechanical:
 - Mechanical structure to integrate the L1 chamber into the Garching/Munich cosmic ray test stand is ready
 - Installation in week 17 18

DAQ:

- FEC card standalone (Ethernet without SRU) (mmdaq1, mmdaq3)
- Synchronized setup with MDTs and full data from SRS (~20 Tbytes/month)
- Synchronized setup with MDTs and zero-suppressed data (O(Gbytes)/month)

Analysis:

- Integration of the ATLAS event format into Micromegas Analysis framework completed
- Comparison of Micromegas tracks with MDT track predictions for several Micromegas operational parameters (mmdaq1, mmdaq3, ATLAS DAQ) and measurement of efficiency, residuals, angular resolution, ...

Garching cosmic ray facility

APV25 Charge Sensitive Analog Frontend

- Analogue pipeline ASIC used for read-out of silicon strip detectors in the CMS tracker
- 128 charge sensitive amplifier channels
- Pipeline buffer of 192 cells depth for each input channel, filled consecutively with every clock cycle (40.08 MHz @LHC)
- Blocks of one or more pipeline columns can be read out for each trigger
- => Time evolution of integrated charge signal for each detector channel in steps of ~25 ns

128 preamplifier channels → Analogue pipeline buffer → Selected columns output

L1A rate vs. APV readout time

- APV readout: 140 clock cycles @40.08 MHz LHC clock frequency
 (128 channels + 12 overhead)
- MicroMegas detectors require 10 20 time bins to sample signal shape
 (1400 2800 clock cycles)
- => Mean time difference between Level 1 triggers:
- ~600 clock cycles @70 kHz trigger rate
- Implementation of busy-logic to decide, which event to process fully (trigger to APV chips), and which not
- Skipped events also generate ATLAS event frame with no data content in FIFO buffer to satisfy ROS requirements
- Tested and working with up to 100 kHz random trigger rate

Garching/LMU Cosmic Ray Facility

