$\begin{array}{c} Extrapolation \ uncertainties \ from \\ single \ top \ generators \\ and \ calculation \ of \ R_t \ predictions \end{array}$

Dominic Hirschbühl

6

TOPLHCWG meeting 18.04.2013

Outline

Extrapolation uncertainty on signal modeling

Prediction for cross section ratio @ NLO

Motivation

ATLAS-CONF-2012-132

Source	$\Delta \sigma_t / \sigma_t [\%]$
Data statistics	± 2.4
MC statistics	± 2.9
Background normalisation	± 1.5
QCD multijet normalisation	± 3.1
Jet energy scale	±7.7
Jet energy resolution	± 3.0
Jet reconstruction	± 0.5
Jet vertex fraction	± 1.6
Mistag modeling	± 0.3
c-tagging efficiency	± 0.4
b-tagging efficiency	± 8.5
$E_{\rm T}^{\rm miss}$	± 2.3
Lepton efficiencies	± 4.1
Lepton energy resolution	± 2.2
Lepton energy scale	± 2.1
PDF	± 2.8
W+jets shape variation	± 0.3
W+jets extrapolation	± 0.6
t-channel generator	± 7.1
tī generator	± 3.3
ISR / FSR	± 9.1
Parton shower	± 0.8
Luminosity	± 3.6
Total systematic	± 18.8
Total	± 19.0

CMS PAS TOP-12-11

Uncertainty source	in pb	relative
Statistical	±5.7	±7.2 %
W+jets and ttmodeling	±3.6	\pm 4.5 %
JES	- 6.2 / + 4.7	- 7.8 / + 5.8 %
JER	-0.8 / +0.3	- 1.0 / + 0.4 %
Unclustered \$\mathcal{E}_T\$	-0.8 / +0.7	- 1.0 / + 0.9 %
Pileup	-0.5 / +0.3	- 0.6 / + 0.4 %
Muon trigger + reconstruction	-4.1 / +4.0	-5.1 / +5.1 %
Q^2	± 2.5	± 3.1 %
<i>tī</i> , rate	- 1.5 / + 1.7	- 1.9 / + 2.1 %
QCD, rate	± 0.7	± 0.9 %
<i>t</i> -channel generator	± 4.4	$\pm 5.5 \%$
Other backgrounds, rate	± 0.5	± 0.6 %
b-tagging	±3.7	±4.6 %
PDF	± 3.7	±4.6 %
Simulation statistics	± 1.8	±2.2 %
Total systematics	±11.0	±13.7 %
Luminosity uncertainty	± 4.0	±5.0 %
Total	±13.0	±16.3%

t-channel generator uncertainty among the most contributing systematic uncertainties.

t-channel single top quark production

light quark jet

 $2 \rightarrow 3$:

- Production in the 4 flavour scheme
- Massive b quarks in the final state

second b-quark / spectator b

$$2 \rightarrow 2$$
:

- Production in the 5 flavour scheme
- Second b produced through DGLAP backward evolution \rightarrow second b quark massless

Overview / "Ranking"

- 4 flavour $(2 \rightarrow 3)$ NLO 1.
 - Not available with parton shower (Only without spin correlations in Powheg)
- Matched samples for $2 \rightarrow 2$ and $2 \rightarrow 3$ process 2.
 - Matching using p_T of second b (Comphep)
 - ACOT method (AcerMC) \rightarrow default in ATLAS
- 4 flavour $(2 \rightarrow 3)$ LO 3.
 - Madgraph, Protos
- 4. 5 flavour $(2 \rightarrow 2)$ NLO
 - **Powheg** \rightarrow default in CMS
 - MC@NLO (not usable due to bug in fHerwig)
- 5. 5 flavour $(2 \rightarrow 2)$ LO
 - Madgraph, Protos, Pythia (second b much too soft)

Calculation available for $2 \rightarrow 2 \& 2 \rightarrow 3$ @ NLO with MCFM

Matched generators

Idea:

- Use b-PDF, when second b is unimportant, otherwise keep b quark in the final state.
- Two different approaches:
- Matching according to the second b p_T (CompHep)
- Subtraction of double counting ACOT (AcerMC)

Comphep – Matching of second b pT Matching parameter: find smooth distribution

AcerMC – ACOT method

TOPLHCWG Meeting 18.04.2013

Event selection for 8 TeV analyses

•Lepton selection (electron / muon):

- $p_T > 25 / 30 \text{ GeV}, |\eta| < 2.5$
- Isolated

• Jets

- Anti-k_T algorithm $\Delta R = 0.4 / 0.5$
- $|\eta| < 4.5$
- Identification of b-quark jets using secondary vertex information
- Number of jets: 2-4 for signal and control regions
- Missing transverse energy
 - $E_T^{miss} > 50 \text{ GeV}$
- QCD multijet veto

t – channel event

Signal extraction: CMS: exactly 2 jets and 1 tag ATLAS: 2 or 3 jets and 1 tag → second b enters only in the acceptance

Systematic uncertainty

Method used in ATLAS

Default generator:

AcerMC + Pythia (matched $2 \rightarrow 2 \& 2 \rightarrow 3 LO$)

Systematic:

```
p_{\rm T} of second b – AcerMC + Pythia vs. MCFM 2 \rightarrow 3 NLO
```

 \rightarrow Use acceptance difference from truth distributions More details next slide

Method used in CMS

- Default generator: Powheg $2 \rightarrow 2$ NLO
- Alternative generator:

Comphep (matched $2 \rightarrow 2 \& 2 \rightarrow 3 LO$)

 \rightarrow Acceptance difference after complete event selection Using half of the difference as systematic variation (Since comparisons between 4-flavour and 5-flavour scheme are always smaller)

Method used in ATLAS

Comparison between AcerMC and MCMF 2 \rightarrow 3 NLO: \rightarrow compared distribution of quarks.

Cut on p_T of second b of 20 GeV gives acceptance difference of 7.1%

-4.1%

-6.9 %

-7.1 %

rel. diff.

rel. diff.

-0.5 %

0.2~%

-1.3 %

Input from theory

Frederix et al, arXiv:1207.5391

Comparison of NLO calculations using Powheg and aMC@NLO

aMC@NLO and Powheg very similar for $2 \rightarrow 3$ NLO

- Ratios given for
- 5-flavour / 4-flavour
 → uncertainty around 5% for lower p_T range
- PDF uncertainties

 → rather small for this
 observable
- Scale uncertainties $2 \rightarrow 3$: very tiny $2 \rightarrow 2$: > 10% over full p_T range!

Potential double counting

Generator related uncertainties in ATLAS

- ISR/FSR
 - Pythia parameter variation , based on $t\bar{t}$ jet gap fraction analysis \rightarrow changes also distribution of second b-quark jet
- PDF
 - AcerMC used MRSTLO**, MCFM used CTEQ6m

Generator related uncertainties in CMS

- Scale variation
 - \rightarrow scales varied by factor of $\frac{1}{2}$ and 2

\rightarrow hard to determine overlap

TOPLHCWG Meeting 18.04.2013

t-channel cross section ratio

The charge of the top quark is connected to the type of the incoming light-flavour quark → Measure cross-section ratio top-quark/top-antiquark production is sensitive to d/u-quark ratio

Prediction for cross section ratio @ NLO for different PDF sets needed.

Available calculations

Author	Order	Scheme	PDF	Free parameters
Kidonakis (only values, no code)	NLO+NNLL	5-flavour	MSTW2008	$\mathrm{m_{top}}, \sqrt{\mathrm{s}}$
Hathor (private version)	NLO	5-flavour	LHAPDF	scales, \sqrt{s}
MCFM (publically available)	NLO	4- / 5- flavour	LHAPDF	All

Strategy:

- Sanity checks:
 - Compare MCFM with Hathor
 - Compare MCFM/Hathor with Kidonakis
- Produce all PDF variations with Hathor/MCFM
 - Calculate uncertainties using Hathor
 - Calculate dependencies on \sqrt{s} , α_s etc. using Hathor

Settings for MCFM

Used Version

6.5

Processes:

- $2 \rightarrow 2: 161 / 166$
- $2 \rightarrow 3:231/236$

Used settings

- $\sqrt{s} = 7 \text{ TeV}$
- Quark masses
 - $m_{top} = 172.5 \text{ GeV},$
 - $2 \rightarrow 2$: $m_b = 0 \text{ GeV}$
 - $2 \rightarrow 3$: $m_b = 4.7 \text{ GeV}$
- No cuts on jets
- All others: default settings

Fac. / Renorm scales

- $2 \rightarrow 2: m_{top}$
- $2 \rightarrow 3$: Light quark line: $m_{top}/2$ Heavy quark line: $m_{top/4}$

Choice from:

J. M. Campbell et. al Phys. Rev. Lett. 102 (2009) 182003

Stat. Uncertainty:

- $2 \to 2: 0.1\%$
- $2 \rightarrow 3: 0.3\%$

Better precision would just mean more CPU ...

Values from MCFM

PDF	σ(t) [pb]	$\sigma(\overline{t})$ [pb]	R _t	$ \begin{array}{c} \sigma(t) & \sigma(\bar{t}) \\ [pb] & [pb] \end{array} $		R _t
		$2 \rightarrow 2$			$2 \rightarrow 3$	
CT10	41.0	21.3	1.93	39.3	20.4	1.93
CT10f4				41.2	21.6	1.91
CT10nlo	41.0	21.3	1.92	39.2	20.4	1.92
CT10w	40.4	21.8	1.86	38.8	20.9	1.86
CT10wf4				40.7	22.0	1.85
MSTW2008nlo68cl	42.3	22.4	1.89	40.1	21.2	1.89
MSTW2008nlo68cl_nf4				40.1	21.3	1.88
abm11_5n_nlo	45.2	22.0	2.06	39.6	19.1	2.07
abm11_4n_nlo				39.6	19.2	2.07
GJR08VFnloE	42.2	22.5	1.87	38.3	20.4	1.88
GJR08FFnloE				40.5	20.6	1.96
HERAPDF15NLO	42.0	21.2	1.98	40.3	20.4	1.98
NNPDF23_nlo_as_0119	42.4	22.7	1.87	40.2	21.6	1.86

TOPLHCWG Meeting 18.04.2013

AT THE TERA SCALE

Comparison between MCFM & Hathor $(2 \rightarrow 2)$

PDF	σ(t) [pb]	σ(<i>t</i>) [pb]	R _t	σ(t) [pb]	σ(<i>t</i>) [pb]	R _t
	MCFM Hat!				Hathor	
CT10	41.0	21.3	1.93	41.0	21.3	1.93
CT10nlo	41.0	21.3	1.92	41.0	21.4	1.92
CT10w	40.4	21.8	1.86	40.4	21.9	1.85
MSTW2008nlo68cl	42.3	22.4	1.89	42.3	22.4	1.89
NNPDF22_nlo_100	42.6	22.6	1.89	42.6	22.7	1.88
abm11_5n_nlo	45.2	22.0	2.06	45.3	22.0	2.06
GJR08VFnloE	42.2	22.5	1.87	42.2	22.5	1.87
HERAPDF15NLO	42.0	21.2	1.98	41.8	21.1	1.98

Kidonakis (MSTW2008nnlo): $\sigma(t) = 42.1 \text{ pb}$ $\sigma(\bar{t}) = 22.4 \text{ pb}$ $R_t = 1.88$

TERA

Calculation of uncertainties

- Statistical uncertainty
- from integration $\rightarrow 0.2\%$ for R_t

Scale uncertainty

- Following Olness et el. <u>arXiv:0907.5052</u>
- Scan μ_r , μ_f plane between $\frac{1}{4}$ and $4 \times nominal$
- Use difference between min and max to nominal, respectively.

 $2 \rightarrow 2$ vs. $2 \rightarrow 3$

• Use difference between the two calculations

PDF internal uncertainties

- Calculations are done according to respective recommendations
 - NNPDFs: Use RMS of replicas
 - All others use symmetric or asymmetric Hessian approach

Not yet included - to be discussed:

- Uncertainty on α_s
- Uncertainty due to top quark mass

Scan of ren. / fac. Scales $(2 \rightarrow 2)$

TOPLHCWG Meeting 18.04.2013

α_{s} dependence

- Nice dependence on α_s ۲
 - Total cross section has a stronger dependence then R_t
- Could quote also uncertainty on α_s

Summary of uncertainties for R_t

PDF	σ(t) [pb]	$\sigma(\overline{t})$ [pb]	R _t	Scale		PDF		$egin{array}{c} 2 { ightarrow} 2 \ 2 { ightarrow} 3 \end{array}$
CT10	41.0	21.3	1.93	-1.1%	0.4%	-4.1%	3.5%	0.3%
CT10w	40.4	21.8	1.86	-0.7%	0.5%	-2.7%	2.3%	0.0%
MSTW2008nlo68cl	42.3	22.4	1.89	-0.8%	0.5%	-1.1%	1.4%	0.2%
NNPDF23_nlo	42.6	22.6	1.89	-0.4%	0.9%	-1.3%	1.3%	0.3%
HERAPDF15	42.0	21.2	1.98	-0.2%	0.9%	-1.3%	1.4%	0.2%
abm11_5n_nlo	45.2	22.0	2.06	-0.5%	0.7%	-1.2%	0.9%	0.7%
GJR08VFnloE	42.2	22.5	1.87	-1.0%	0.0%	-2.5%	2.7%	0.2%

Calculations are for 7 TeV! Statistical uncertainty on $R_t \pm 0.2\%$

Conclusion

- Extrapolation uncertainty for t-channel cross section measurement
- Getting one of the dominant uncertainties
- ATLAS and CMS uses quite different approach
- What should we quote as generator uncertainty
 - 4-flavour vs. 5-flavour?
 - scale uncertainty?
 - How to avoid overlap with other generator uncertainties.

Cross section predictions for \mathbf{R}_{t}

- Quite different choice how to compare with predictions for different PDF sets
- Harmonize presentation ?
 - Choice of PDF sets
 - Choice of parameters (m_{t,} ...)
 - Choice of quoted uncertainties
 - Estimation of uncertainties

 $\begin{bmatrix} 14 \text{ TeV} \\ 300 \\ m_{top} = 172.5 \text{ GeV} \\ MRST2008NLO \\ \hline t + \overline{t} \\ 200 \\ \hline t + \overline{t} \\ \hline \overline{t} \\ 0 \\ 0 \\ 5 \\ 100 \\ \hline 10 \\ 0 \\ 5 \\ center-of-mass energy [TeV] \\ \end{bmatrix}$

Backup

TOPLHCWG Meeting 18.04.2013

TERA

Scale scans for $R_t (2 \rightarrow 2)$

TOPLHCWG Meeting 18.04.2013

Rt calcualtions from CMS

Calculation done with Powheg using reweighting @ 8 TeV For fixed four-flavour PDFs : $2 \rightarrow 3$ NLO Variable flavour PDFs : $2 \rightarrow 2$ NLO

Parameters:

 $m_{t} = 173 \text{ GeV}$

Uncertainties

- Scale uncertainty: factor of 2 and $\frac{1}{2}$ simultaneously varied
- Statistical uncertainty
- Top mass: 172 GeV and 174 GeV

