

Top Mass Combination and Hadronization Uncertainties

Giorgio Cortiana, MPP Munich Steve Wimpenny, UC Riverside

TOP-LHC-WG Meeting, April 18th 2013.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

★ Topics Covered

- Summer 2012 LHC Combination:
 what it does/doesn't contain
- Additional Results and Prospects: - CMS & ATLAS updates
- What is needed for the next LHC Combination:
 - topics to be addressed
- Fragmentation Meeting 25/3/13:
 - short and longer-term studies
 - preliminary b-quark D(z) study
 - search for kinematic biases

Evolution of Mass Measurements at 7 TeV

Summer 2012 Preliminary LHC Combination ICHEP 2012

 $m_t = 173.3 \pm 0.5 \text{ (stat.)} \pm 1.3 \text{ (syst.)} \text{ GeV}$

(0.8 % Precision)

This is based on preliminary and published results from ATLAS and CMS

It does not include/use:

- the ATLAS dilepton measurement from the 2011 data
- the CMS all-hadronic measurement from 2011
- the CMS full luminosity lepton+jets & dilepton measurements from the 2011 data
- results from any additional analyses from CMS or ATLAS (e.g. CMS end-point analysis)

New Results since last LHC combination

Preliminary CMS Combination (TOP2012) CMS-PAS-TOP-11-018

$$m_t = 173.36 \pm 0.38 \text{ (stat.)} \pm 0.91 \text{ (syst.)} \text{ GeV}$$
 (0.6 % Precision)

CMS Kinematic Endpoint Analysis CMS-PAS-TOP-11-027

 $m_t = 173.9 \pm 0.9 \text{ (stat.)}^{+1.2} \text{ (syst.) GeV}$

Systematic uncertainties partially uncorrelated with standard analyses (not included in CMS combination)

New Results since last LHC combination

ATLAS preliminary dilepton measurement using m_{T2} ATLAS-CONF-082

 $m_t = 175.2 \pm 1.6 \text{ (stat.)}^{+3.1}_{-2.8} \text{ (syst.) GeV}$

Systematic uncertainties partially uncorrelated with standard analyses

Also updates to full 2011 luminosity coming (timescale TBC)

→ time to consider an updated LHC combination

Issues to be addressed

1.) Treatment of Hadronization Uncertainties:

- need a coherent treatment for both ATLAS and CMS
- investigation of the uncertainties due to b-quark D(z) modeling and its coverage in the current b-JES uncertainty
- study of the uncertainties due to the fragmentation modeling (cluster vs string....) and its coverage in the current b-JES/JES uncertainties

 2.) Study of the uncertainties due to the modeling of the finite top and W-decay widths
 (e.g. when using models with different implementations: Madgraph/Alpgen vs MC@NLO/Powheg)

→ these need to be addressed for both the next ATLAS/CMS combination and any LHC/Tevatron combination

➔ Tentative Plan:

- Perform an new preliminary LHC combination as soon as the fragmentation uncertainties are resolved
- Proceed with an LHC + Tevatron combination soon afterwards (inputs to be agreed by all four collaborations)

Hadronization systematics: were do we stand

- Hadronization models describe the transition from final state partons to colorless hadrons
- Cluster and string hadronization models are implemented in Herwig and Pythia, respectively

- Hadronization systematics are considered in the determination of both the JES (Jet Energy Scale) and the MC modelling uncertainties:
 - the component in the JES refers mainly to single isolated jets
 - the hadronization unc. from top-pair MC accounts also for the multijet environment

there could be a sizeable double counting

	Tevatron		LHC		
	CDF	D0	ATLAS	CMS	
Hadronization	Pythia/Herwig incl. UE syst	Alpgen Pythia/Herwig incl. UE syst	Powheg Pythia/Herwig	(considered in the JES syst determination)	_)
Unc. on m _{top} [GeV]	0.2 – 0.3	0.6	0.2 – <mark>0.9</mark>	n/e	_

Fragmentation Meeting – CERN, March 25th

- Much discussion of both CMS and ATLAS current implementations and JES terminology (not identical in some cases)

- Also on the role of non-perturbative corrections: UE modeling, OOC corrections vs parton flavor, CR effects and limitations of current modeling

Short-term Proposals (Priority Items):

- both experiments will evaluate the difference between string (Pythia) and cluster fragmentation (Herwig) for a common ME generator

Question: Should this be done using an NLO generator, rather than a matched generator?

Longer-term Study Ideas:

- MC studies:

 $\Delta R(reco-truth jet)$ vs $\Delta R_{min}(closest jet)$ to look for any additional hadronization uncertainty not covered by the standard JES terms

- Data/MC studies:

compare sensitive variables to exclude extreme models (i.e. derive data-driven constraints of systematics)

Work in Progress

- Generation of MC files needed for Herwig/Pythia fragmentation comparison
- Studies of the effect of using finite top width in simulation
- Studies of the uncertainties due to the D(z) modeling for b-quarks

Hope to get results from these soon

Markus Seidel

Prelim. b-quark D(z) Study

Soft QCD uncertainties: CMS Lepton+Jet Analysis (TOP-11-015)

- Measurement based on reconstruction of invariant masses from jets

- Kinematic fit:

 $m_t^{fit} \rightarrow (m_t, \text{JES}) \quad m_W^{reco} \rightarrow \text{JES}$

Source	Description	$\delta_{m_t}^\ell$	$\delta^\ell_{ m JES}$
b-JES	Scale b-jet energies $\pm \sigma_{flavour}$	0.61	0.000
— aka hadronization	factorized approach of "Pythia vs. Herwig"		
Colour reconnection	Pythia P11 vs. P11noCR	0.54	0.004
Underlying event	Pythia P11 vs. P11mpHi & P11TeV	0.15	0.002
Soft QCD total		0.83	0.004
TOP-11-015 total	incl. all uncertainties	0.98	0.008

→ Dominant uncertainties for this mass measurement

b fragmentation

- Vary Bowler-Lund parameters for quark fragmentation (Caveat: cannot be done independently for light and b quarks in Pythia6)
- Corcella (arXiv:0907.5158v3) tuned to b-hadron data (figure right)
- Compare default/Z2, P11 and Corcella (figure left, table)

- Harder fragmentation = more energy in jet cone
- 2D fit absorbs parameter change
- Estimate impact on b-jets by fixing JES=1
- \rightarrow Small effect of b fragmentation
 - 0.1 0.2 GeV on m_t
 - Should hold for other "standard" measurements

Kinematic StudyCMS-PAS-TOP-12-029

Search for possible bias due to systematic uncertainties - lepton + jets channel

Color Reconnection

Measure top quark mass as a function of kinematics (12 variables) using the analysis method taken from TOP-11-015

Compare results to:

Madgraph+Pythia Z2 tune (CMS default) Madgraph+Pythia P11 and P11noCR MC@NLO+Herwig6 POWHEG+Pythia Z2 tune

→ no evidence for kinematic bias and dramatic effects are excluded

12 kinematic variables studied using both JES =1 and simultaneous JES and m_t fits:

Observations:

no evidence for large bias from CR, ISR/FSR, or b-quark kinematics no evidence for large bias due to difference between m_t (MC) and m_t ?

Summary

- There have been significant improvements to the precision of the individual ATLAS and CMS analyses since the last LHC combination was made.
- New results are available/coming in the near future. Some of these have systematics which are partially uncorrelated with the standard analyses.
- We have started working towards a new combination.
- Studies are needed to improve the characterization of the systematics for the fragmentation and width uncertainties. These are in progress.
- On completion of the studies and certification of the results, we will proceed with the new preliminary LHC result, followed by a first pass at an LHC + Tevatron combination.