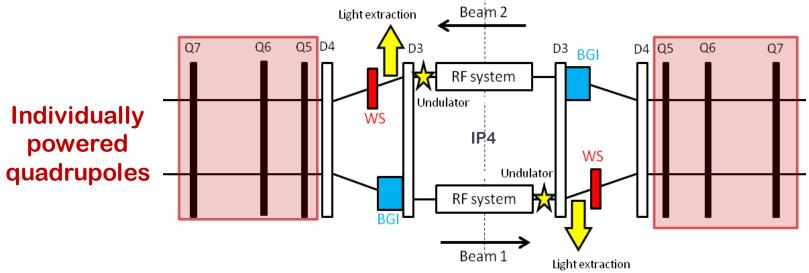


K-Modulation Plans

M. Kuhn, B. Dehning, R. Garcia, V. Kain, R. Steinhagen, G. Trad

- 1. Motivation
- 2. K-Modulation method
 - Example: 2012 measurements
- 3. Limitations
 - Tune precision
 - Knowledge of quadrupole strength
- 4. Plans for k-modulation tool post LS1
- 5. Sinusoidal k-modulation



Motivation

- o Alternative method for measuring β functions at locations with individually powered quadrupoles
- o Essential for locations with non-optimum phase advance between BPMs for turn-by-turn phase advance measurement
 - e.g. β*, IR4
- o Model independent
- o Example IR4:

- Essential for absolute emittance measurement

K-Modulation Method

- o Requires individually powered quadrupoles
- o Method:
 - Vary quadrupole strength k
 - Measure consequent beam tune change ΔQ
 - determine β at quadrupole location
- o Average β function along magnet length l:
 - From trace of transport matrix for one turn

$$\beta = \frac{2}{l \cdot \Delta k} \left[\cot(2\pi Q) - \frac{\cos(2\pi (Q + \Delta Q))}{\sin(2\pi Q)} \right]$$

K-Modulation Method

- o Requires individually powered quadrupoles
- o Method:
 - Vary quadrupole strength k
 - Measure consequent beam tune change ΔQ
 - determine β at quadrupole location
- Average & function along magnet length / · CAVEAT: NOT SUITABLE TO MEASURE BETA FUNCTIONS AROUND THE WHOLE RING - TOO TIME CONSUMING

$$\beta = \frac{2}{l \cdot \Delta k} \left[\cot(2\pi Q) - \frac{\cos(2\pi (Q + \Delta Q))}{\sin(2\pi Q)} \right]$$

• For small tune changes far from integer and half integer tune resonances:

 $(2\pi\Delta Q < 1)$

$$\boldsymbol{\beta}_{x,y} \approx 4\pi \frac{\Delta \boldsymbol{Q}_{x,y}}{\boldsymbol{l} \cdot \Delta \boldsymbol{k}}$$

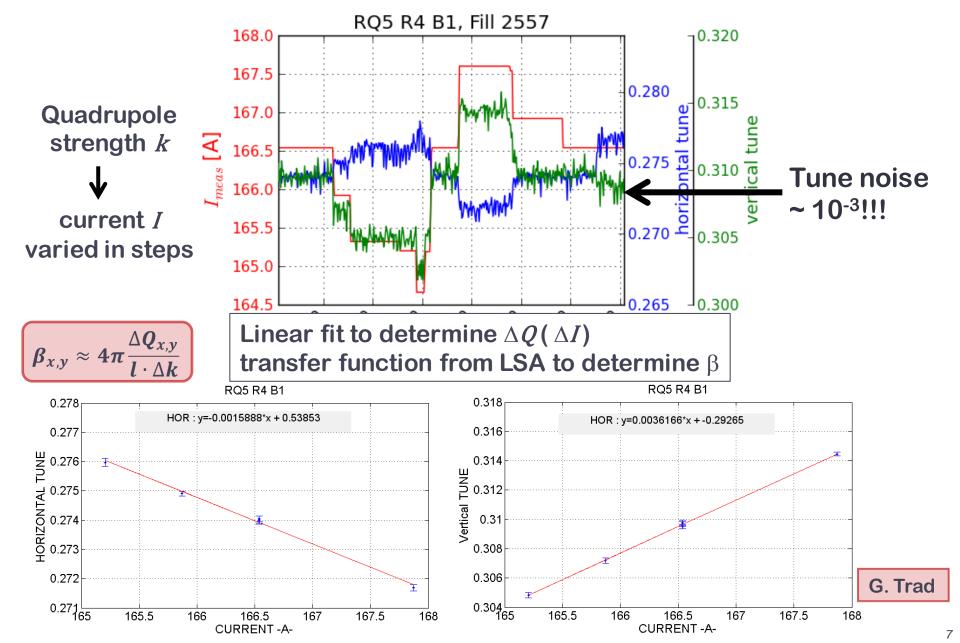
• Accurate measurement of ΔQ and precise knowledge of Δk

CERN

Example – 2012 Measurements (1)

o Measured β at quadrupoles in IR4 at injection, flattop and with squeezed optics

Beam 1	MQY.5L4.B1	MQY.5R4.B1	MQY.6R4.B1	MQM.7R4.B1
Beam 2	MQY.5L4.B2	MQY.5R4.B2	MQY.6L4.B2	


- o One quadrupole at a time
 - "manual" measurement via LSA Trim Editor
- o Required beam conditions:
 - Transverse damper off
 - Injection tunes (less coupling)
 - Only few bunches
- o Offline analysis, transported measured β values at quadrupole to transverse profile monitor locations

G. Trad

Example – 2012 Measurements (2)

CERN

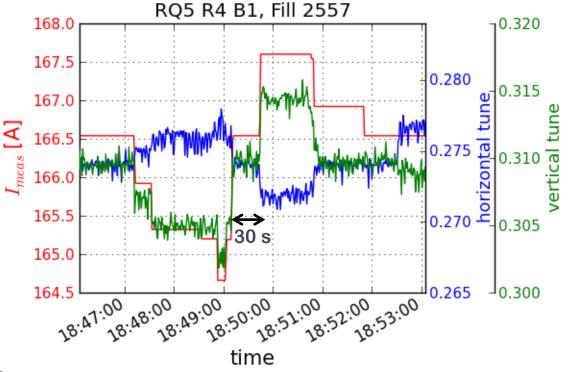
Example – 2012 Measurements (3)

- o Quadrupole $\beta \rightarrow$ beam instrumentation location β
 - Analytical method: interpolation via transfer matrices
 - Matching with MADX
- o Results: errors reduced wrt turn-by-turn phase advance measurement, but still large...

	Beam 1 Horizontal		Beta-beat	K-mod Analytical	K-mod Matching
450 GeV	Wire Scanner	165.48	158.83 ± 13 %	181.2 ± 6.45 %	183.7 ± 11.5 %
	Undulator	178.14	174.93 ± 13.2 %	199.9 ± 9.75 %	196.8 ± 13.3 %
4 TeV	Wire Scanner	165.48	151.74 ± 12.1 %	159.2 ± 6.45 %	173.3 ± 12 %
	Dipole D3	172.97	158.7 ± 8.76 %	165.4 ± 5.35 %	177.3 ± 12 %
Squeeze	Wire Scanner	165.48	159.27 ± 23.6 %	161.7 ± 7.5 %	179.9 ± 16 %
	Dipole D3	172.97	167.43 ± 24.5 %	174.5 ± 7.77 %	G. Trad

Limitations (1)

- o "Manual" trims on k time consuming, error prone
 - Application was in pipeline, could not be fully debugged
 - Application offered only basic functionality

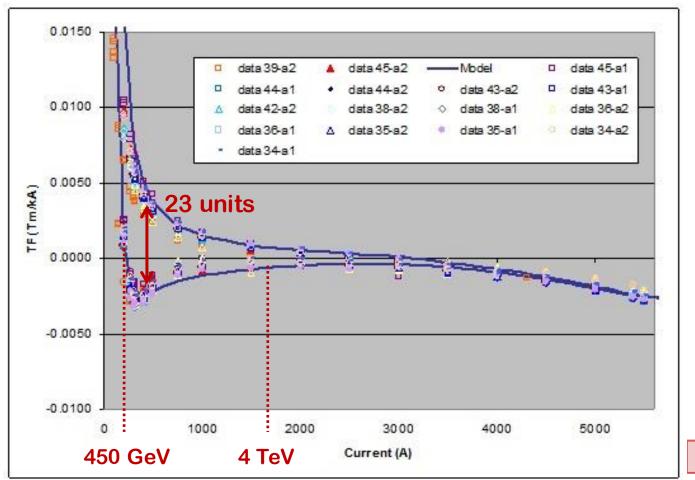

🐇 K-Modulation						
💽 🔻 RBA: no to	oken 🖲 LHC 🔻 🦑				Current a	onlication
- Parameter selection					our rent a	spilcation
LANDAU DAMPING	System	Type Groups	Paramet	ters		
LHCINJKICKERS		К	Filter:		0	
LUMI-SCAN			RQ5.R2B2/K1			
MATCHING QUADR	UPOLE		RQ5.R4B1/K1 RQ5.R4B2/K1			
MD-KNOBS			RQ5.R5B1/K1			
MOMENTUM			Select	All		
NOT USED	Select All	Select All	Hierarchy		how Field(s)	
		Select All	nierarcity	3		
Search parameter	by name:					
					Trim amplitude	
					1.0E-6	
LSA look-and-feel			d-teel		Trim time	
					60.0	
	CTRIM period					
• • •	Uses LSA trim client and transfer functions					
• Trim range to be entered in k (would desire						
	initiange to	De entereu	III A (WOUld desi	C		
ti	ine)				Pick File	
		- ulat				
No online tune plot						
1						
00:44:13 - Trim task	finiched				,	

Limitations (2) – Tune Precision

- o Tune noise level with damper off: 10⁻³
 - require total tune change in range of 10⁻² for k-modulation
 - (Max. possible tune change = 1.5 x 10⁻²)
- o Time estimate per beam mode ~ 10 min
 - 1 2 min per quadrupole

 Machine set up to reduce tune noise (coupling correction, tune separations, ...) most time consuming

o Parasitic measurements with physics beam excluded


- Unless using sacrificial 6 bunches and excitation
- (K-modulation with colliding beams not possible)

$\textbf{Limitations} - \textbf{Knowledge of } \Delta \textbf{k}$

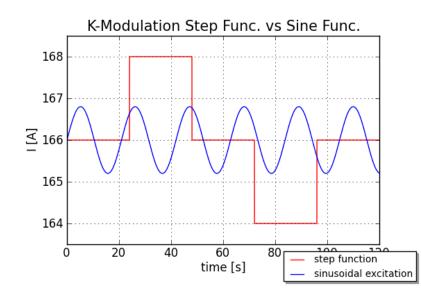
- o Absolute error on transfer function ~ 0.1 0.2 %
- o Transfer function error from hysteresis ~ 0.2 % or smaller
 - → Total estimated error on $\beta \sim 10\%$ (mainly due to tune noise)

Measurement of the transfer function for MQM (similar for MQY)

Example: MQM.7R4.B1

W. Venturini

Plans for K-Modulation Tool Post LS1

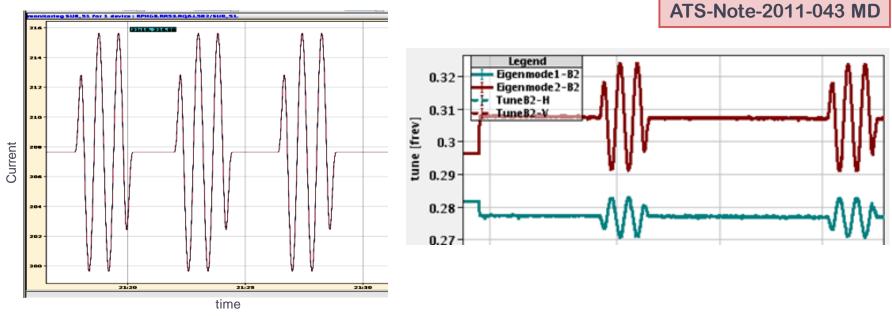

o Modify and debug existing application

- Add tune acquisition + filtering
- Possibility to enter steps in "tune change" instead of trims on k, using LSA knowledge
- Interpolation calculate β at any point
- Integrated into LHC control system (LSA, JMAD,...)

- ONLINE ANALYSIS

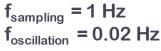
o Additional measurement mode: SINSOIDAL EXCITATION

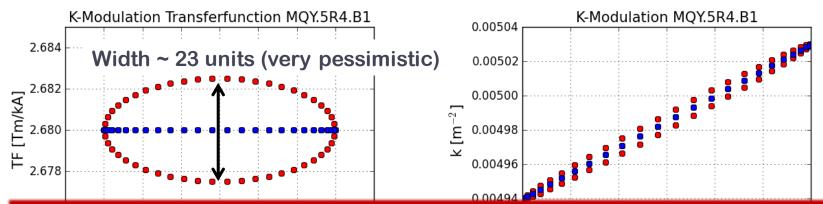
- Smaller amplitude and higher frequency than for step function
- More quadrupoles at the same time with different frequencies
- Details (QPS limits,...) to be checked



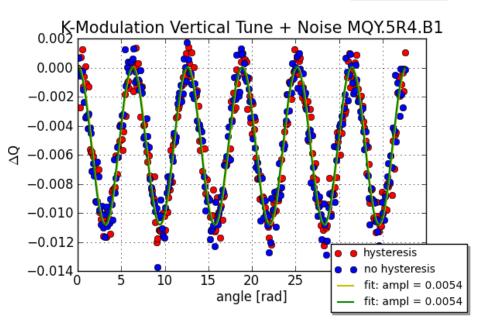
Sinusoidal K-Modulation

o Example measurements (2010):




- o Sinusoidal strength modulation to quadrupole directly at power converter
 - Power converter parameters: number of periods, amplitude, frequency ω_0
 - ...triplet model more complicated
- o Fit tune response with $\Delta Q = \Delta Q_0 \cdot \sin(\omega_0 t + f)$

Sinusoidal Excitation - Simulation



Hysteresis has no measurable effect on β function determination
Noisy tune signal gives large β errors

β _y [m]	430.99
Noisy tune	425.53 ± 20.39
hysteresis	430.99 ± 3 × 10 ⁻⁴
Noisy tune	438.00 ± 22.58

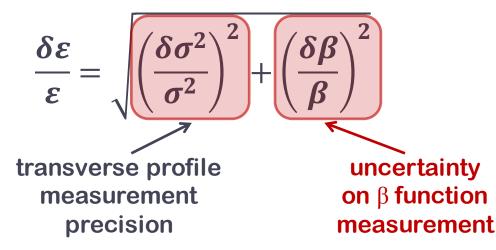
~ 5 % error! with 10⁻³ tune noise

Conclusion

- o Alternative method for measuring β functions: k-modulation
 - For locations with individually powered quadrupoles
- o Was successfully used in 2011/12
 - No dedicated tools operational
 - Results only obtainable offline
- o β function measurement accuracy via k-modulation in the LHC mainly limited by tune noise
- o Online tool for K-modulation planned for post LS1 LHC run
 - Will also offer sinusoidal excitation of quadrupoles
- o Application to be tested in the SPS in 2014

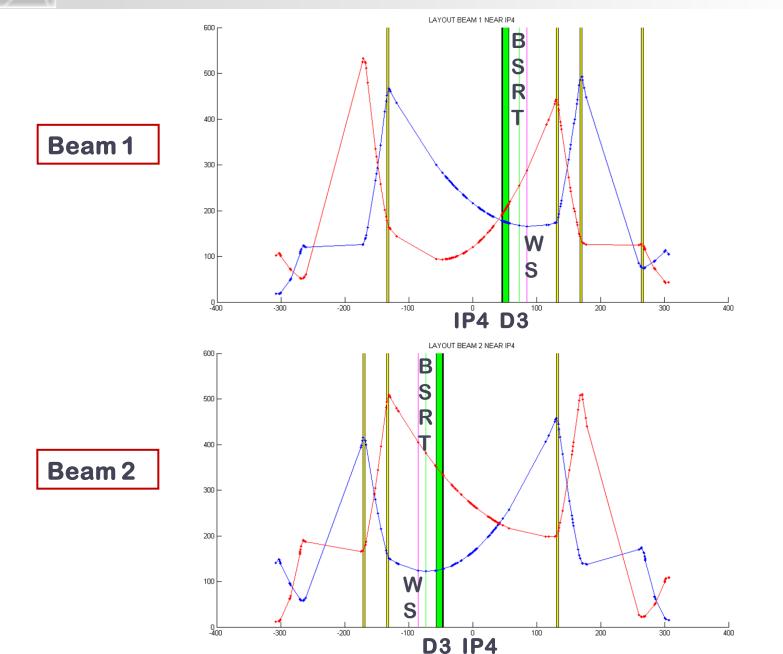
BACKUP

Motivation: Emittance



- o Transverse profile monitors located in IR4
- o Normalized transverse emittance:

$$\varepsilon_{x,y} = \frac{\gamma}{\beta_{x,y}} \left(\sigma^2 - D^2 \left(\frac{dp}{p} \right)^2 \right)$$


dispersion negligible (at location of transverse profile monitors in IR4)

o Accuracy of emittance measurement depends on

β Functions in IR4

G. Trad