
Colliding squeeze and b* leveling

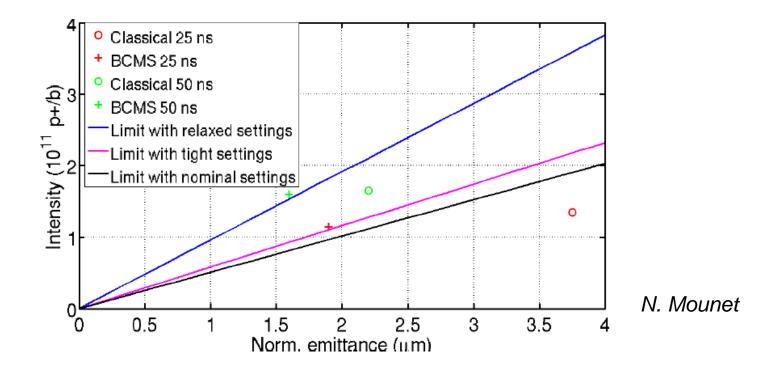
J. Wenninger

X.Buffat, W. Herr, T. Pieloni,

- As the bunch intensity was pushed in 2012, instabilities have started to plaque operation.
- Depending on sign and current of octupoles as well as Q', the problem appeared at different moments in the cycle.
 - Still subject of studies and discussions.
- □ Head-on beam-beam turned out to be an efficient → the most effective source of Landau damping.

 \Rightarrow Idea to collide during (part of) the squeeze to stabilize beams.

At 6.5+ TeV the efficiency of our octupoles will go down further. And the low emittance BCMS beams will not improve the situation.



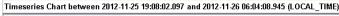
Evaluate options for colliding during the squeeze

- **Dependence on collimator settings** \Leftrightarrow define β^* reach.
 - Tighter collimators \rightarrow lower β^* and lower instability threshold.
 - It would be nice to predict the optimum !
- □ 50 ns BCMS critical, 25 ns ~ could be OK.

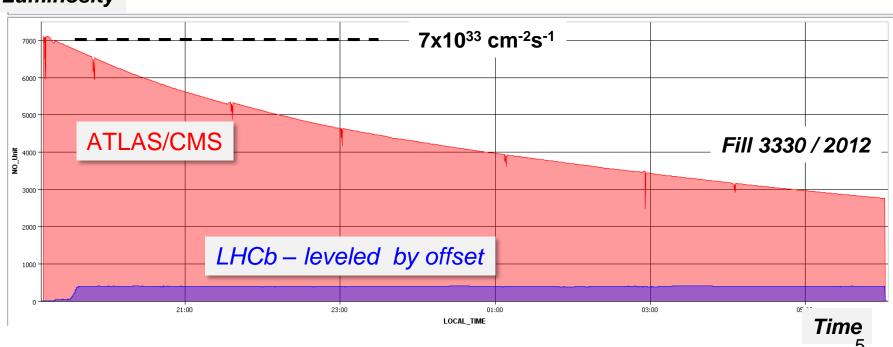
Two out of many possible scenarios @ 6.5 TeV

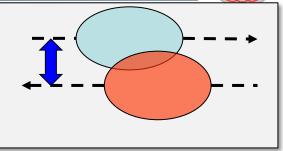
Beam	k	N _b [10 ¹¹ p]	ε [μ m]	β* [m]	L [10 ³⁴ cm ⁻² s ⁻¹]	Event pile-up	Int. L [fb ⁻¹]
50 ns	1260	1.70	1.6	0.4	2.0	110*	~30
25 ns low ε	2520	1.15	1.9	0.4	1.5	42*	~50
25 ns standard	2760	1.15	3.7	0.5	0.85	23	~30

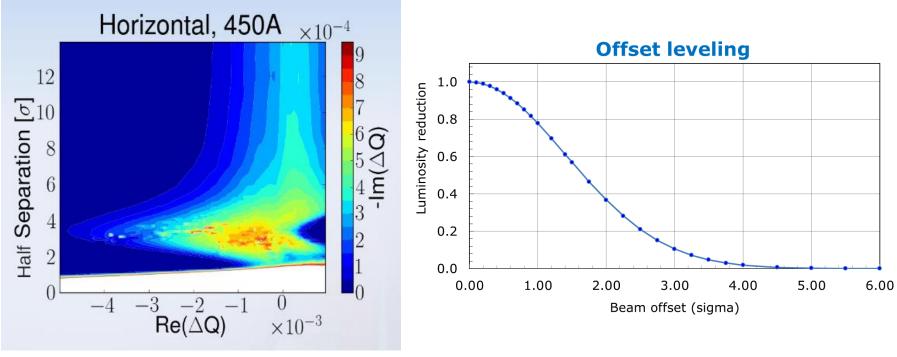
Optimists would say that we could get 50% higher peak L...


- □ 50 ns : pile-up way to high \rightarrow leveling needed.
- □ 25 ns: at the limit for ATLAS / CMS? Wait and see.

Leveling luminosities




- In run 1 we have leveled the luminosity of LHCb (and ALICE) by adjusting the offsets between the beams.
 - Smooth, local and easy to operate.
- In run 2 we have to consider β* leveling for stability reasons.


17.06.2013

Offset leveling

- Offset leveling by a factor ~2 as required for IR1+IR5 with 50 ns brings us into an unfavorable region for beam stability.
- Offset leveling in H for ATLAS and V for CMS (separation planes) could be envisaged taking advantage of head-on from other IP.
 - Issue of luminosity optimizations instability triggered during scans.

OMC - Beta* leveling

Squeezing with colliding beams and beta* leveling are similar operations – squeezes – but with different boundary conditions.

Colliding squeeze: experiments are off/on standby (could be ON!!)

- As fast as possible,
- Large / minimum number of steps in beta* ('one go desirable'),
- Fixed beta* sequence.
- Beta* leveling: experiments are taking data
 - As smooth as possible,
 - o Small steps,
 - Ideally fully flexible beta* sequence.

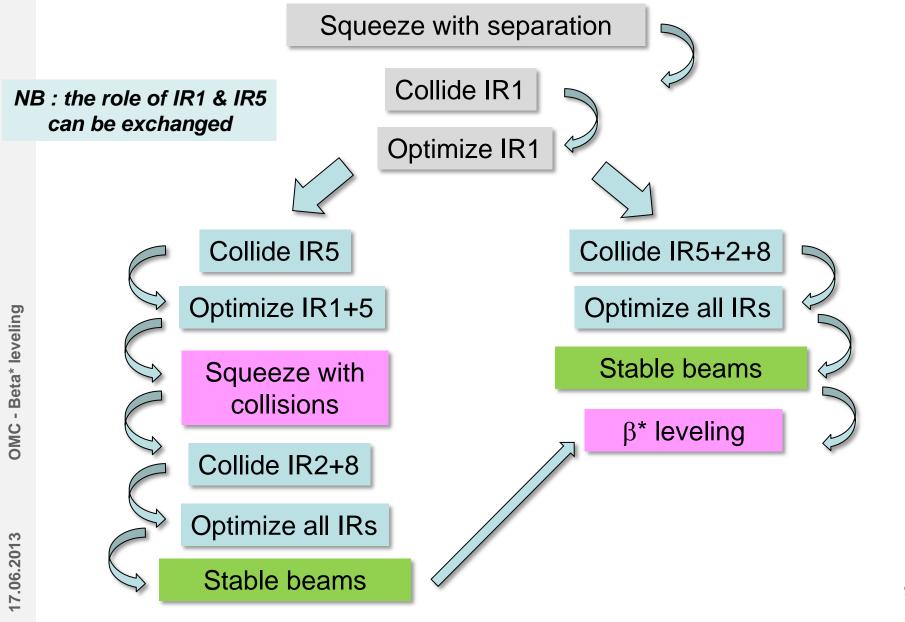
Compared to a simple squeeze the added challenge is to keep the beams in collision during the process

(ignoring controls aspects here)

□ IR1 and IR5:

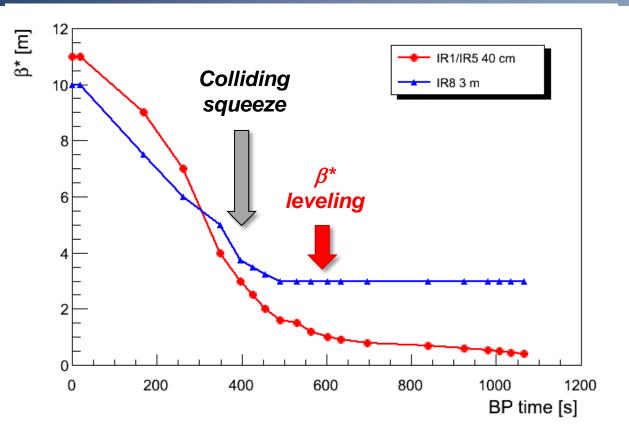
- \circ *Expected* β^* *range*:
 - ~3 m (coll. squeeze) / ~1.5-1.0 m (β^* level) \Rightarrow min. β^* ~0.4 m.

□ IR2:

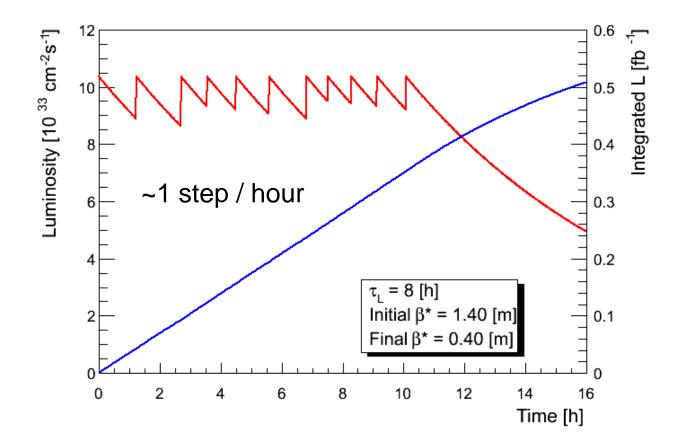

- No β^* leveling possible L reduction \geq 100 needed (β^* 10m).
- Only offset leveling is an option, required offset: ~4-5 sigma.

IR8:

- \circ Required <u> β^* range</u>: from ~20-40 m to 3-5 m.
- o Depends on beam (50 / 25 ns) and brightness.
- De-squeeze and/or larger injection β^* required !
- The ranges are increased for flat beams in IR1 and IR5.
 - No flat beams in IR8: excessive β range and tilted crossing !

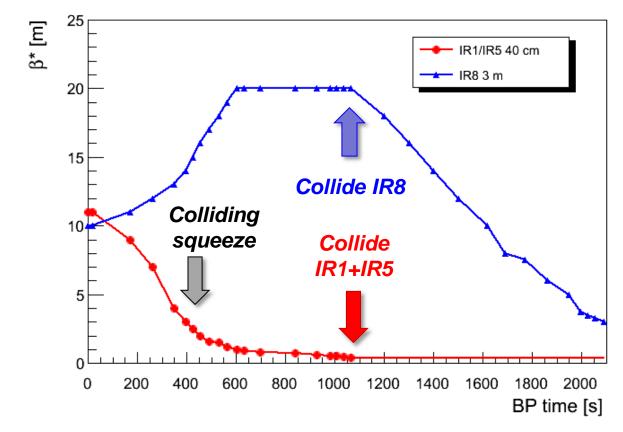


Scenario IR1+R5 β^* leveling / colliding squeeze


Colliding squeeze or β^* leveling IR1+IR5.

- Essentially the same machine settings / setup.
- \circ Assumes the <u>same</u> β^* in IR1 and IR5.
- Offset leveling in IR8.
- 'Easy' to revert to squeeze with separation followed by collisions.

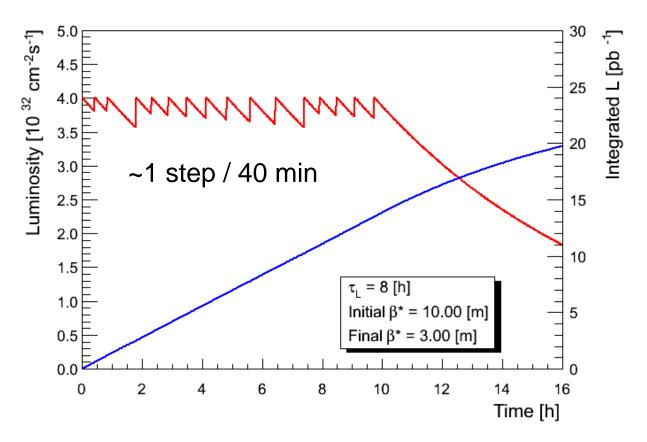
Example of a leveled fill IR1/5


 \Box 50 ns leveled down to 10³⁴ cm⁻²s⁻¹.

Steps correspond to the 2012 squeeze points. Luminosity is constant within 10% until we run out of β* points.

Scenario IR8 β* leveling

\square β^* leveling in IR8 – if <u>no issue with pile-up in IR1&IR5</u>.


 \circ Squeeze IR1/5 to 0.4m, IR8 β^* ~20 m (max?).

 \rightarrow need an un-squeeze in IR8, or start with offset leveling.

• To revert to offset leveling: redo squeeze (IR8) \rightarrow need smaller β^* in IR8.

□ 25 ns beam with ~3.5 μ m emittance and 10¹¹ p/b leveled to 4x10³² cm⁻²s⁻¹.

The steps correspond to all currently available matched points/optics. Luminosity is constant within 10% until we run out of β^* points.

Collide in IR2 during the 'squeeze'

- $_{\circ}$ Since there is no squeeze in ALICE/IR2 → stable conditions much easier !
- Collide in IR2 during squeeze, as soon as beams collide in IR1+IR5 → reseparate for stable beams.
- But ALICE must be OFF, OFF, OFF not sure ALICE will accept this...
- □ Fully flexible beta* leveling in IR1+IR5+IR8 (à la HL-LHC?)
 - Every experiment can choose its β^* at any time in any fill...
 - To do it properly requires (significant) changes in the LHC control system.
 - The commissioning is much longer: 3-5 times?
 - > Squeeze each IR alone \rightarrow collect all corrections.
 - > Test flexible squeeze N times.

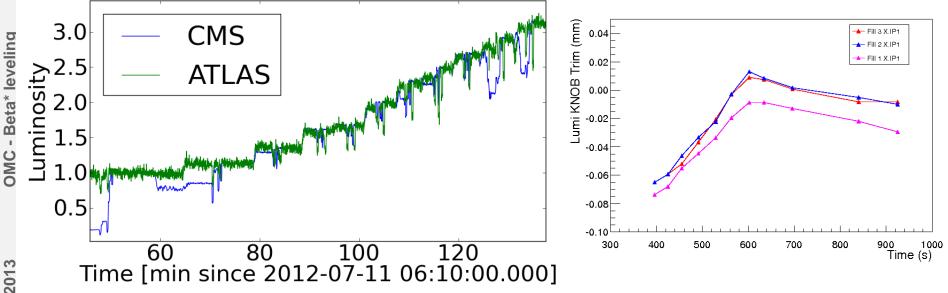
Change of paradigm: we are NOT reproducing the same sequence in every fill as we did so far.

Not considered (so far) for post LS1

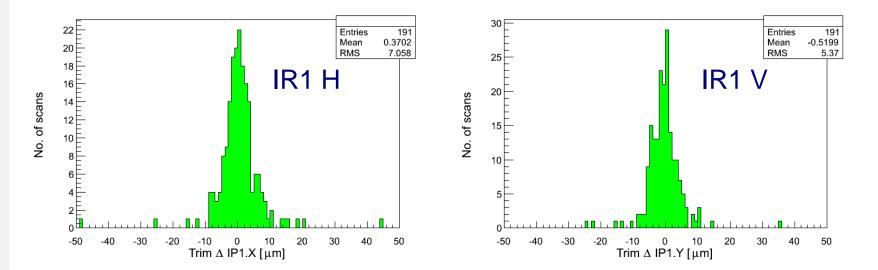
Colliding squeeze: driven by beam stability considerations.

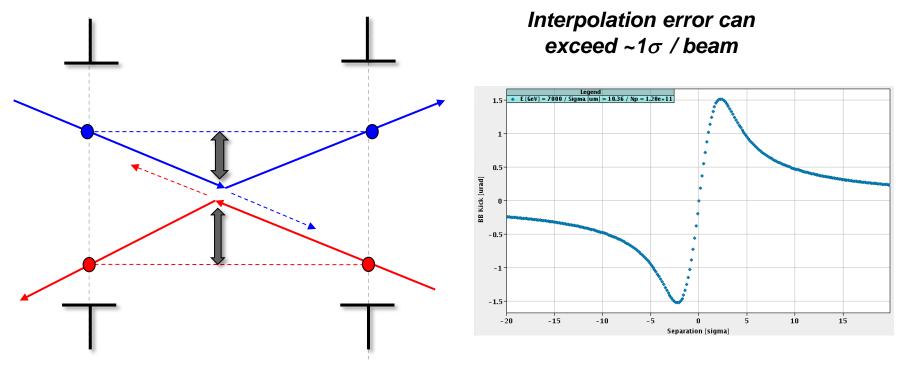
• The beams should remain in collision within ~ 1 sigma.

Beta* leveling: driven by luminosity considerations.


- Excluding beam stability, no hard constraints on stability.
 - > If leveling in IR8, stability not too critical \Leftrightarrow head-on for 1+5.
- But it is better if the beams are kept colliding head-on.
- Steps should not be too large 5-10% seems a reasonable compromise between stable periods and squeezing periods.

MDs in 2012


- Principle was tested with success in 2012 from 11m and 3m \rightarrow 0.6m.
- Luminosity corrections remained valid for an interval of 3 weeks.
 - $_{\circ}$ Only overall offset change \rightarrow established with going into collision.
- Orbit reference management was a bit tricky.
 - Lumi knobs were not part of reference orbit system 'easy' to fix.
 - Need a very clean setup of the orbit from the start.


- □ Stabilization of the collision point during the process is more difficult for large colliding squeeze β^* steps than for small β^* leveling steps.
- Technique 1: Just correct the orbit well (to the reference) with all available BPMs what we did so far.
 - Worked very well in 2012 for the last point of the squeeze.
 - $_{\circ}$ Fill-2-fill reproducibility of 0.5 σ for more than 95% of the fills.
 - After LS1 on could try to tune no. of SVD eigenvalues for orbit correction.

- <u>Technique 2</u>: Integrate more precise BPMs around the IP 'DOROS'.
 - We should get one more accurate (!) BPM at Q1 after LS1.
 - Wait and see how it works, if we use it for precise steering → possible redundancy issue what if the BPM is 'broken'?
 - Note that the measurement is biased by beam-beam kicks when the beams are not head-on !

17.06.2013

Luminosity – scan the beams

- Multi-point scans, 2D scans, back and forth one step one plane at a time.
- Need fast and accurate relative luminosity values. Issue when there are few bunches...
- Scan procedure is not stable with drifts in both planes, can easily be biased:
 - > Example: drift of V separation while scanning H plane \rightarrow wrong result !
 - > 'Large' drift as compared to scan range \rightarrow need 2σ scan range?

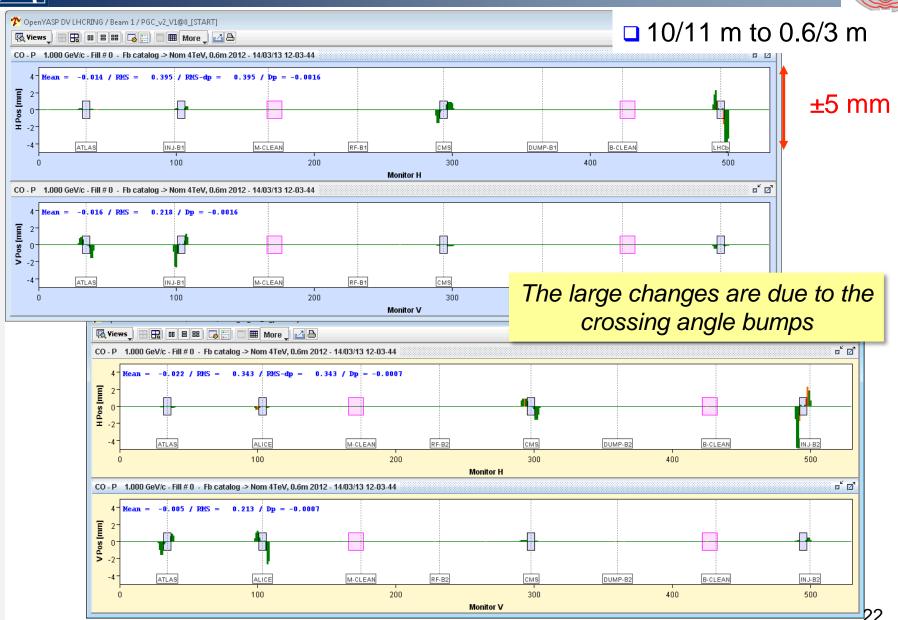
Large range is in contradiction with stability requirements.

To be looked at more carefully...

Setup and optics measurements

- Processes must be setup from the start with beams in collision.
 - One could of course consider switching on separation for certain measurements...
- Optics measurements and other diagnostics (Q,Q', coupling) are easier to perform with non-colliding beams.
- Setup fills & commissioning: no problem add/use non-colliding bunch(es).
 - $_{\circ}$ Watch out for the Safe Beam Limit \Leftrightarrow masking of certain interlocks.
 - Measurement and correction of beam parameters: no change wrt past (exclude fully flexible scheme).
- With high intensity Q diagnostics (and everything that depends on it) may be an issue due to beam-beam.
 - Feed-forward will be important as it was in 2012 for the squeeze.

Driving the process



- A β* leveling / colliding squeeze step is similar to a standard squeeze step with separation.
 - Functions, feed-forward of Q, Q', orbit...
 - Orbit FB on (+ reference change as needed),
 - Unclear if we can use Q FB quality wait and see.
 - Tertiary collimators moving (a priori).
- Since β* leveling is more invasive than offset leveling, and in some cases the experiments will be coupled (ATLAS/CMS), the control of the leveling has to be revised ⇔ comm. with experiments.
 - With offset leveling each experiment is free to drive the steps (see LHCb), with β^* leveling the process is too heavy (at least in the beginning).
- Given Series Forward detectors (TOTEM, ALFA) must change positions during data taking with $β^*$ leveling to maintain distance constant (in σ).
 - Requires settings functions !
 - Or we set them to the most conservative distance. But this means that the distance in sigma varies along the fill.

Example: ref. orbit change in 2012 pp squeeze

- □ For simple leveling / colliding squeeze (fixed and reproducible β^* sequence) all the ingredients are available.
- □ Things to improve/change:
 - We have to take into account luminosity knobs in the reference orbit.
 - o It must be possible to incorporate lumi knob trims in the reference 'on the fly'.
 - We should aim to keep all corrections as local as possible prepare for the future (orbit, beta-beating).

- Sequencing the colliding squeeze.
 - To be analyzed.
 - o If it is a problem to perform it in one step → small automated steps:
 Load & execute a step, if luminosity OK → next step, if not OK fast luminosity optimization, incorporate changes (trim + orbit ref) before step.

^{0}

- To get leveling 'à la carte' in all IRs (except IR2) we need to change habits and structure.
- Commission the leveling (squeeze sequence) one IR at a time.
 - Keep corrections local (as far as reasonable) orbit, beta-beat.
 - $_{\circ}$ Collect all corrections and store as a function of β^{*} for each IR separately.
- **D** Execute the leveling to move from one β^* configuration to the next:
 - Collect and add together the changes for all IRs involved in a step (including all corrections for orbit, Q, Q', beta-beat, etc).
 - Build the functions to drive to the end points dynamically.

Change of paradigm: we are NOT reproducing the same sequence in every fill !

- □ Knobs are nice, but they accumulate.
- And there is a tendency for chaos and absence of naming conventions.... A subset (!) of beta-beat knobs

Parameter selection - LHCRING **Type Groups** System Parameters KNOB B3. Filter: R4 к LHCBEAM/ChromCoupling_B2_450GeV_MD_2012 K_SMOOTH **R5** LHCBEAM/ChromCoupling_B2_4TeV_60cm_MD_2012 BETA-BEATING LHCBEAM/Dry_run_knob_creation_2012-02-02 IREF BETA-STAR LHCBEAM/InjectionCorrectionHalfIntegerB1_30-Oct-2011 CHROMATICITY IREF_NESTED LHCBEAM/KNOB_IRNL_2012MD3_IP1-a3b3 CHROMATICITY_REF LHCBEAM/KNOB_IRNL_2012MD3_IP1-b4 LHCBEAM/KNOB_IRNL_2012MD3_IP2-a3b3 In the future: LHCBEAM/KNOB_IRNL_2012MD3_IP5-a3b3 LHCBEAM/KNOB_IRNL_2012MD3_IP5-b4 We will define naming conventions for LHCBEAM/Local_bbeat_ATS_20cm_2012 LHCBEAM/Local_coup_20cm_ATS_2012_B1 knobs. LHCBEAM/Local_coupl_corr_Injection_2012 LHCBEAM/MD4-halfint_betabeating_B2_oct_2011 LHCBEAM/MD4_halfintager_oct_2011 You are requested to stick to it. LHCBEAM/MQY_correction_Inj_2012 LHCBEAM/MQY_ions13_squeeze_step_1 LHCBEAM/MQY_ions13_squeeze_step_2 Old knobs will be parked in a special LHCBEAM/MQY_ions13_squeeze_step_3 LHCBEAM/MQY_ions13_squeeze_step_4 parameter group (removing them would LHCBEAM/b1_global_beta_correction_IP150_IP150_IP10000_ LHCBEAM/b2_global_beta_correction_IP150_IP150_IP10000_ require to delete all their settings) to LHCBEAM/beta_correction_IP150_IP150_IP1000_IP300 LHCBEAM/betabeat_IONS_pPb_Global_4TeV_b1_correct avoid cluttering the GUIs. LHCBEAM/betabeat_IONS_pPb_Global_4TeV_b2_correct LHCREAM/hotshest IONS nPh alabsi 4TeV

-

- **There are number of options for colliding squeeze or** β^* leveling.
- Input from the experiments needed to define parameters (average & peak pile-up, granularity) and control of β* leveling.
- □ We could try β^* leveling in IR8 if IR1+IR5 need no β^* leveling.
 - With IR1+IR5 in collision, there are no issues with stability relaxes requirements on position control at IP8 good training for the future.
- □ Ultimate β^* à la carte requires LSA changes (to be done cleanly).
 - Study all implications for the future. Not justified for 2015.
- Small working group looking at the leveling options and issues for post LS1 – just started.
 - Updates and results reported at LBOC.