

Optics configurations from injection to collision

Massimo Giovannozzi

- Status quo or evolution?
- Injection configurations

Remark: design effort to analyse possible improvements to the IR optics on-going (S. Fartoukh).

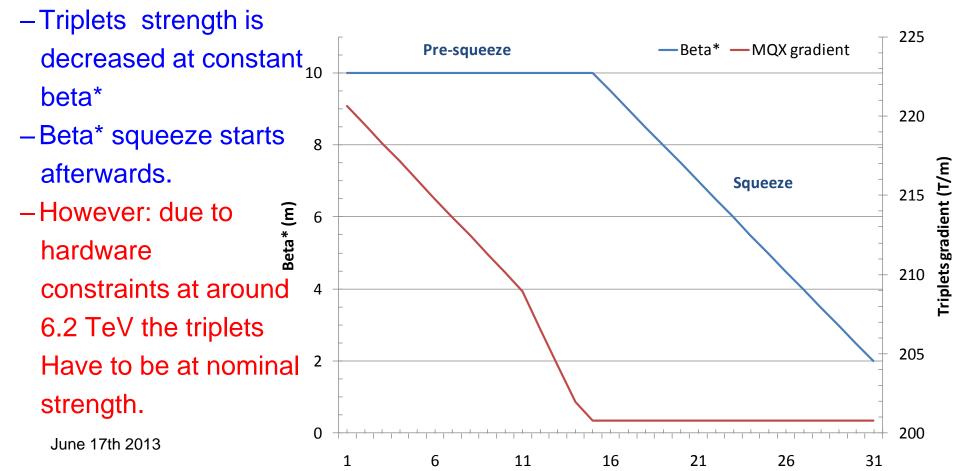
- Top energy configurations (IR1/5)
 - Flat beams
 - ATS
- High-beta
- Summary

Acknowledgements: R. Bruce, S. Fartoukh, session speakers and chairman, T. Risselada, R. Tomás.

Status quo or evolution? - I

- Out of LS1 with a new machine and new target energy:
 - Keep the injection optics configuration as in the 2012 run.
 - Incorporate improvements from MD and paper studies and commission them in 2015.
 - Possible options (never implemented during Run I) already discussed
 - Chamonix 2012 (M.G.)
 - Evian 2012 (R. Tomás)

For Alice and LHCb the quoted angles are the external ones.

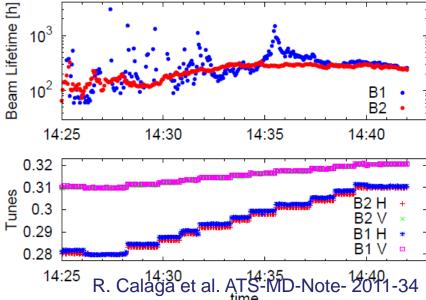

	ATLAS	Alice	CMS	LHCb
Beta* (m)	11	10	11	10
half cross angle (μrad)	170	170	170	170
half parallel separation (mm)	2	2	2	2

Status quo or evolution? - II

- Is it really possible to keep optics configuration unchanged? Not quite!
 - IR2/8:
 - Injection process imposes a number of constraints on phase advance (kicker/septum, kicker/TDI).
 - Solution presented in LHC PR Notes 188 (IR2) and 193 (IR8) by O. Brüning.
 - The gradient for injection optics is 220 T/m.
 - Nominal solution:
 - Pre-squeeze at constant beta*

Status quo or evolution? - III

- Acceptance tests were performed up to 230 T/m.
- The nominal gradient can be exceeded provided the beams are not in collision. Hence:
- -Optics is kept constant from injection to top energy.


Status quo or evolution? - IV

- In Run II the change of strength of triplets should be performed before reaching the nominal collision energy.
- It is proposed to remove the constraint on performing the pre-squeeze at constant beta*
 - Already during Run I the triplets in IR2/8 where changed during squeeze together with beta*.
 - This would allow reaching the nominal beta* in IR2/8 (in particular if un-squeeze is required).
- Two options possible:
 - Perform the pre-squeeze after the end of the injection process (but still at injection energy) -> moderate change
 - Perform the pre-squeeze during the ramp -> bold change!
 - It opens up the Pandora box of more complex ramp and squeeze gymnastics!

Injection configurations - I

- Collision tunes at injection:
 - Successfully tested in 2011 in MD.
 - Some gain in beam lifetime.
 - Change of tune too violent at the first step of the squeeze.
 - 19 s gained (from current squeeze sequence)
 - Less manipulations at top energy.
 - As an alternative, the change could be performed more adiabatically than in Run I.

Interesting option, but not fundamental!

Injection configurations - II

12

10

Beta* (m)

6

4

2

0 0

200

400

600

Time (s)

800

1000

1200

1400

- Lower beta* in ATLAS, CMS at injection
 - Target beta* at injection: 7-9 m (current 11 m).
 - Some gain for the squeeze time: 262-169 s (current squeeze).

– Pros:

Simple, no dynamic change, positive impact on squeeze duration.

– Cons:

- With 25 ns beams, e-cloud might have a negative impact on transverse beam emittance: reducing beta* at injection might not be the best strategy.
- Lower powering of insertion quadrupoles...
- Alternatively, β^* could be reduced during ramp (optics change needed anyway): what is the added complexity?

Interesting option, to be explored in more details!

June 17th 2013

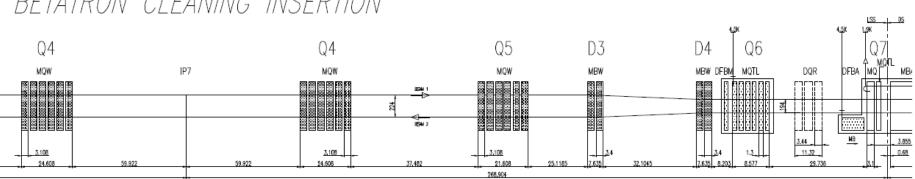
-BX-IR1 BX-IR2

BX-IR8

Injection configurations - III

- New optics in IR6 (proposal by S. Fartoukh):
 - Improved phase advance between MKD and TCSG.
 - Positive impact on protection of TCSG and retraction of TCDQ/TCT.
 - Discussed at LBOC (31/01/2012).

Interesting option, to be explored in more details!

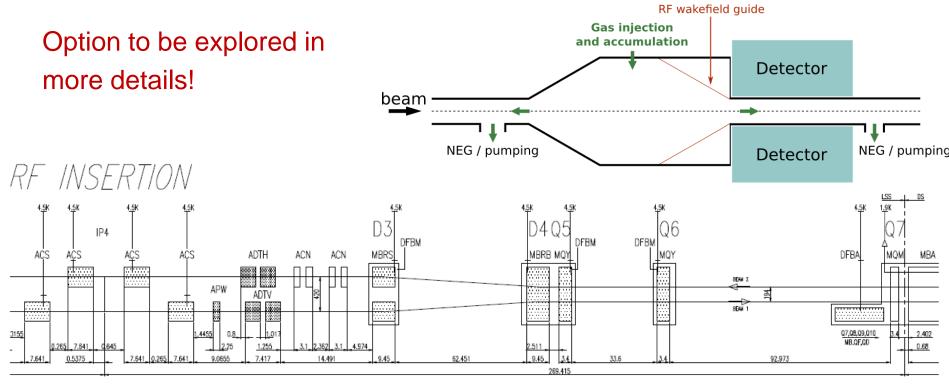

- Crossing scheme in IR8 (to be presented at next LMC meeting 19/06/2013)
 - Injection (S. Fartoukh): optimised horizontal crossing scheme to overcome small amplitude beam-beam encounters.
 - Collision (B. Holzer): review of gymnastics to tilt the crossing plane and avoid systematic differences between spectrometer polarities.

Mandatory option!

Injection configurations - IV

- New optics in IR3/7?
 - Trigger: recuperate warm magnets to increase the number of spares. Preliminary conclusions:
 - In IR3 no MQWB can be removed without changing the optical conditions at the collimators.
 - In IR7 the MQWB modules in the two Q5 may be removed without changing the optical conditions at the collimators (2 spare magnets).
 - Any other change in the layout will generate a difference of optical condition at the location of the collimators -> Detailed validation of the optics with simulations is required before taking any decision.

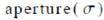
Option to be explored in more details!

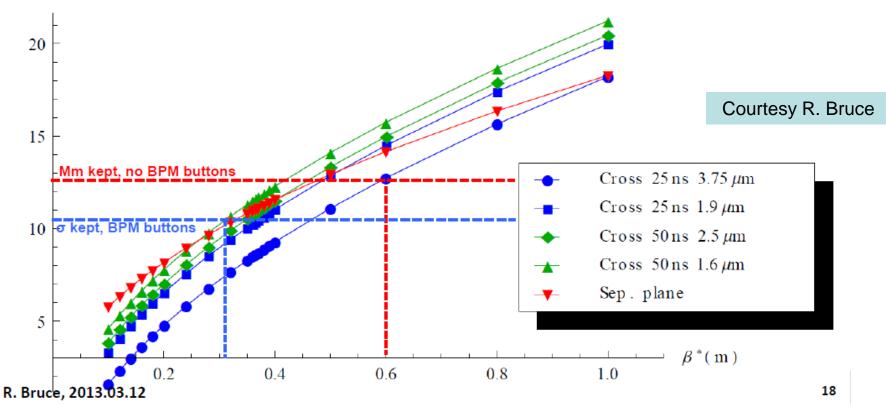


BETATRON CLEANING INSERTION

Analysis made by T. Risselada

Injection configurations - V


- New optics in IR4?
 - Trigger: improve optical conditions for instruments (e.g., new BGV).
 - Constraints:
 - IR4 is used to tune the LHC: at injection mechanical aperture is the limiting factor.
 - Extended optics flexibility at top energy -> change of optics between injection/top energy.



Top energy configurations IR1/5 - I

Preliminary β*-reach

- LHC Collimation Project
- Crossing plane aperture scaled from most pessimistic 2011/2012 measurements (11 σ at 4 TeV, 60cm, 145 μ rad) to 6.5 TeV configurations
- Reach in β^* between ~31cm and ~60cm in crossing plane unless reverting to relaxed settings

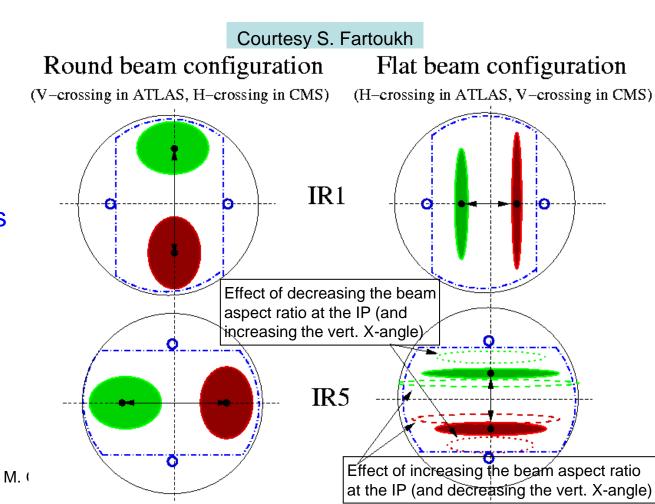
Top energy configurations IR1/5-II

HC Collimation

CERN	Summary:	preliminary	β*-reach	LHC Collimation Project
50 ns, 2.5 um	beta* crossing (cm)	•	Half crossing angle (urad)	
mm scaled, no BPM	47			
mm scaled, BPM	39			
2 sig retraction, no BPM	42			
2 sig retraction, BPM	35	33	150	9.3
50 ns, 1.6 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	43			
mm scaled, BPM	35			
2 sig retraction, no BPM	38			
2 sig retraction, BPM	31	33	127	7 9.3
	31 cm	< β* < 6	0 cm	
25 ns, 3.75 um			Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	60	-		• • •
mm scaled, BPM	52	39	194	4 12
2 sig retraction, no BPM	55	5 43	189) 12
2 sig retraction, BPM	46	5 33	205	5 12
				Courtesy R. Brud
25 ns, 1.9 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	49			
mm scaled, BPM	42			
2 sig retraction, no BPM	45			
2 sig retraction, BPM	37	7 33	163	3 12

Top energy configurations IR1/5-III

- Assume a conservative value of beta* of 60 cm.
 - Status quo with respect to Run I.
 - Review of impact of hysteresis for squeeze at 6.5 TeV.
- Assume a beta* of 40 cm.
 - Nominal optics (round beams):
 - Settings available and successfully tested in MD in 2012.
 - Few quadrupoles are running out of strength at 7 TeV, but this can be fixed.


			Better sit	uation in	06 - IP	1 and IP5 - 4	4 TeV	Courtesy E	Todesco
Q6 - IP1	and IP5 - 7	'TeV	terms of h	ysteresis	-		Gradient	•	
β* (m)	k (m-2)	Gradient (T/m)	Current (A)	Error (units)	β* (m)	k (m-2)	(T/m)	Current (A	Error (units)
11.00	0.005068	118.4	3188	1	11.00	0.002896	67.6	1821	0
9.00	0.005292	123.6	3329	1	9.00	0.003024	70.6	1902	0
7.00	0.005393	126.0	3392	1	7.00	0.003082	72.0	1938	0
5.00	0.005288	123.5	3326	1	5.00	0.003022	70.6	1901	2
4.00	0.005094	119.0	3204	1	4.00	0.002911	68.0	1831	3
3.50	0.004933	115.2	3103	1	3.50	0.002819	65.8	1773	3
2.50	0.004362	101.9	2744	1	2.50	0.002493	58.2	1568	3
2.00	0.003823	89.3	2405	1	2.00	0.002185	51.0	1374	4
1.50	0.003385	79.1	2129	2	1.50	0.001934	45.2	1217	5
1.10	0.002754	64.3	1732	3	1.10	0.001574	36.8	990	7
0.80	0.001866	43.6	1174	5	0.80	0.001066	24.9	671	12
J0.65	0.001203	28.1	757	10	O ^{0.65}	0.000688	16.1	432	21
0.55	0.000617	14.4	388	26	0.55	0.000352	8.2	222	60

Flat beams - I

Performance reach of a flat optics (based on S. Fartoukh presentation a LHC MAC – June 06)

Remark:

- Alternating plane of crossing angle is kept, but orientation has to be changed with respect to round optics configuration.
- Larger beta* in the crossing plane.
- Smaller beta* in the separation plane.
- Beta*x=r Beta*
- Beta*y=1/r Beta* June 17th 2013

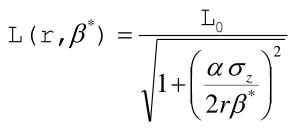
Flat beams - II

• *Summary table* (note case 5 further split into 2 sub-cases)

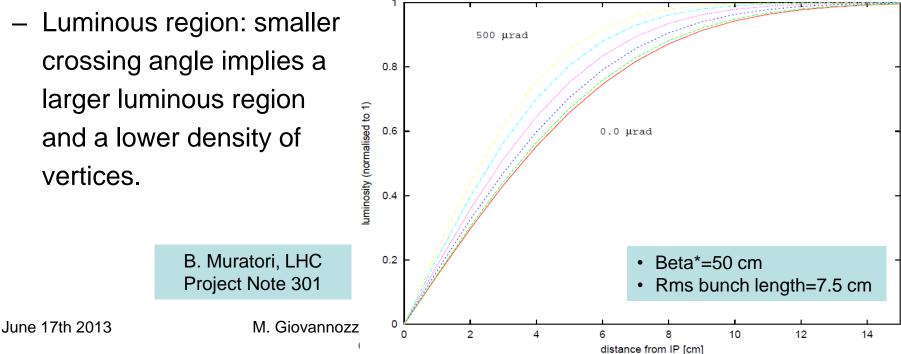
Case	β _x [*] [cm]	β _y [*] [cm]	α *[µrad]	Triplet aperture (n1)	Geometric loss factor [%]	L/L _{nom}
Case 1 : Nominal r=1.0, β*=55cm	55.00	55.00	285 (9.5σ)	~7	83.9	1.00
Case 2 : Flat r=2.0, β*=55cm	110.00	27.50	201 (9.5σ)	~7	95.1	1.13
Case 3 : Flat r=1.6, β*=55cm	88.00	34.37	225 (9.5σ)	~7.5	92.7	1.10
Case 4 : Flat r~1.7, β*~51cm	88.00	30.00	225 (9.5σ)	~7	92.7	1.18
Case 5a : Flat r~1.45, β*~61cm	88.00	42.00	225 (9.5σ)	~ 8	92.7	1.00
Case 5b : Flat r~1.45, β*~61cm	88.00	42.00	263 (~110)	~7	90.4	0.97

\rightarrow All these configurations are achievable with the nominal LHC

hardware (layout, power supply, optics antisymmetry, b.s. orientation in the MQX'triplets).

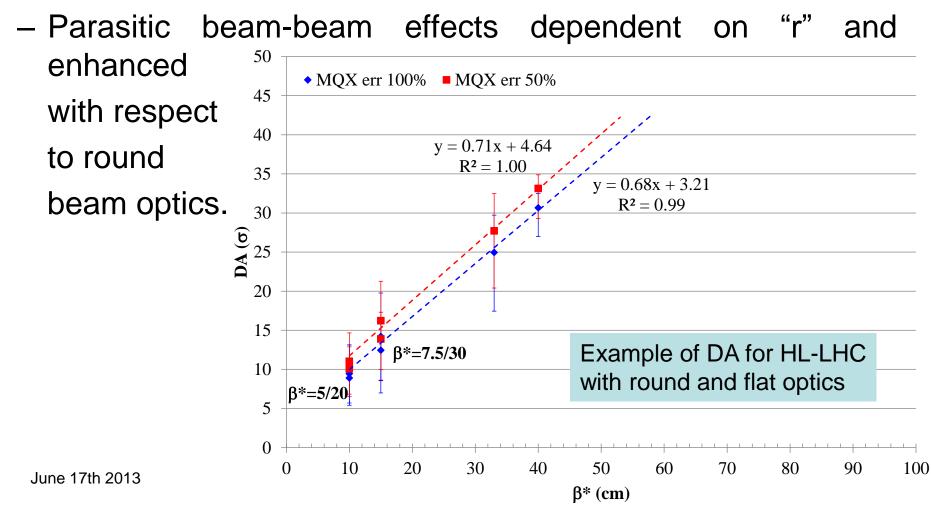

\rightarrow The last 3 cases will be studied in more detail.

S. Fartoukh, LHC-MAC, 16 June 2006, p. 10/20


Courtesy S. Fartoukh

Flat beams - III

- Additional remarks:
 - Previous table based on nominal beta*=55 cm.
 - If beta*=40 cm is considered feasible, then performance can be reviewed (upwards).
 - Flat beams recover the performance loss of the geometric factor (at best, nothing more).



- Previous performance table assumed 7.5 cm rms bunch length.
- Longer bunches allow a higher performance increase with flat beams.

Flat beams - IV

- Performance of flat beams:
 - DA not too much different than for round optics
 - HO tune shift independent of "r".

ATS - I

- ATS (by S. Fartoukh)
 - Offers the possibility of achieving very small beta* and correcting chromatic effects.
 - Two stages at top energy:
 - Pre-squeeze: from beta* at injection to about 40 cm.
 - Squeeze: arc optics changed in neighbouring arcs of IR1 and 5.
 - Given beta* reach estimated for post LS1, only presqueeze should be used
 - A very mild squeeze might be needed in case of pushed performance.
 - Flat beams options available.
 - Successfully tested in MD down to beta* of 10 cm.

High-beta optics - I

- Estimate of performance post LS1:
 - Even higher beta* than in Run I.
 - Exact estimate of beta* reach depends on installation of additional cables.
 - Rather independent on optics choices for the rest of the machine in case of nominal optics:
 - High-beta optics are local to IR1/5 apart from the tune compensation (using main quadrupoles).
 - In case of ATS
 - Develop a high-beta optics compatible with ATS -> additional commissioning efforts.
 - Keep the same overall machine configuration as in Run I and develop further the IR1/5 optics solution to achieve higher beta* values.

Summary

- Probably, it will not be possible to keep exactly the same optical configuration of Run I.
- Change of triplets' strength in IR2/8 might impose ramp and squeeze.
- A number of improvements are being studied (S. Fartoukh) for the IRs optics: trade off between adding new features, while keeping changes to the minimum necessary should be found.
- At top energy, flat optics options will bring performance improvements or additional margins.
- ATS is a very interesting candidate for post LS1 operation.