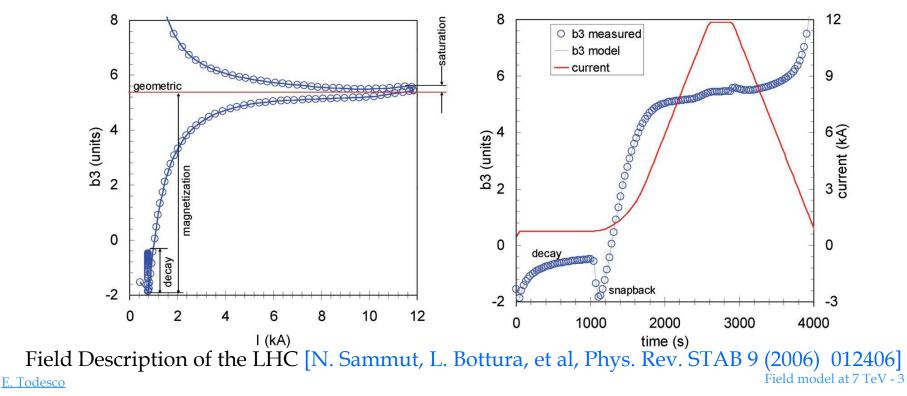


FIELD MODEL AT 7 TEV

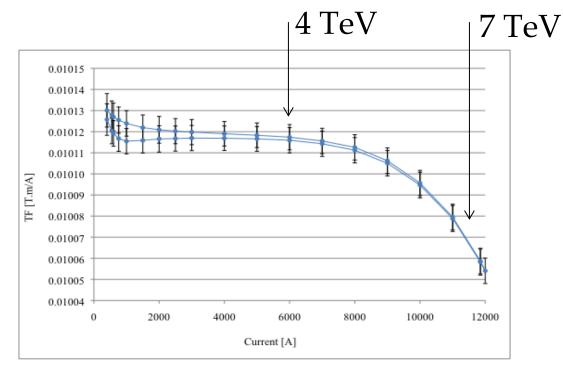
N. Aquilina, E. Todesco CERN, Geneva, Switzerland

On behalf of the FiDeL team http://www.cern.ch/fidel

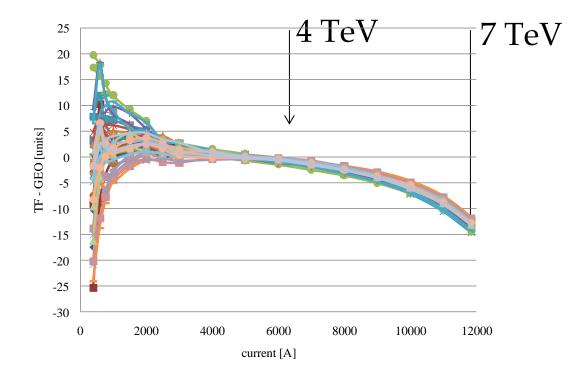
CONTENTS



- Transfer functions at 7 TeV
 - Dipole (energy, orbit)
 - Quadrupoles (tune, optics, beta beating)
- Decay and snapback
- Hysteresis
- Precycling
- Cross-checks and errors

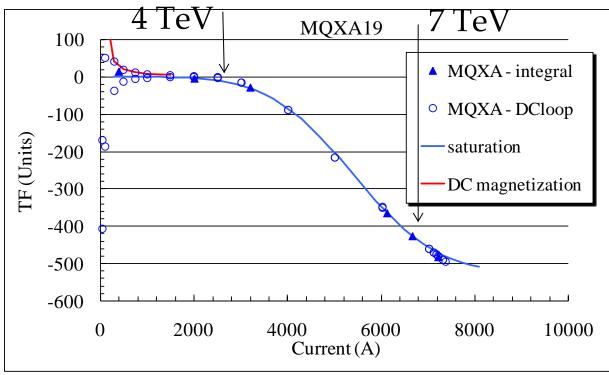

- FiDeL (Field Model of the LHC) is the recipe to convert current in field/gradients, plus the precycling strategy
 - Based on equations with free parameters to fit the measurements
 - All the knowledge of the magnetic measurements during correction lumped in these equations plus their coefficients

- At 7 TeV many LHC magnet will enter a regime of saturated iron (nonlinear transfer function)
 - MB: 70 units
 - Implemented, relative precision ~5%, we can expect 3 units error



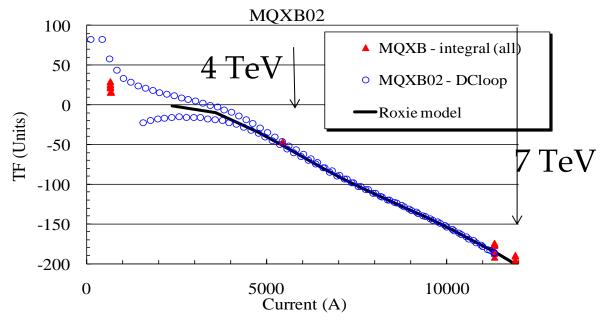
LHC main dipole transfer function [L. Deniau]

- At 7 TeV many LHC magnet will enter a regime of saturated iron (nonlinear transfer function)
 - MQ: 15 units
 - Implemented, we can expect 1 units error not an issue



LHC main quadrupole transfer function [L. Deniau]

- At 7 TeV many LHC magnet will enter a regime of saturated iron (nonlinear transfer function)
 - MQXA: 500 units this is the largest saturation in the LHC
 - Implemented, but we can easily expect 25 units error



LHC MQXA transfer function [E. Todesco]

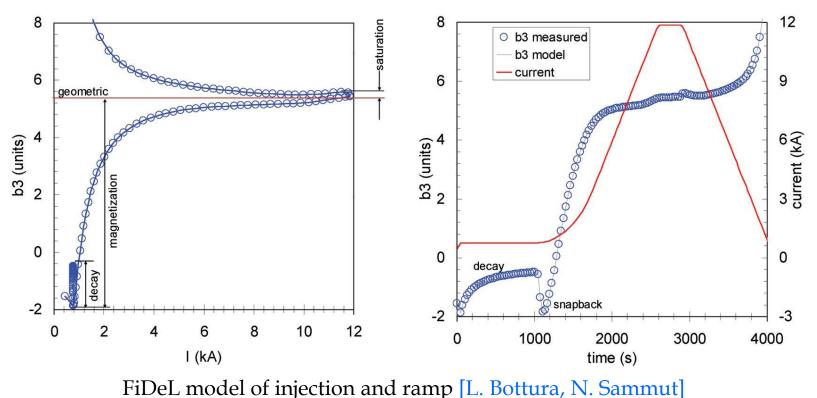
- At 7 TeV many LHC magnet will enter a regime of saturated iron (nonlinear transfer function)
 - MQXB: 180 units
 - Implemented, we can easily expect 10 units error

LHC MQXB transfer function [E. Todesco]

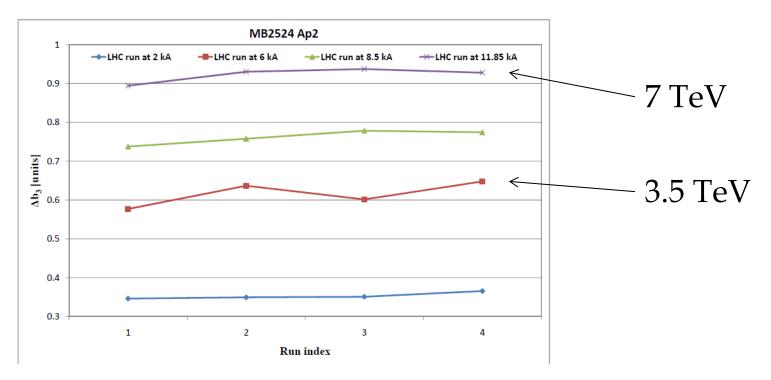
TRANSFER FUNCTIONS

- Saturation summary
 - All saturations are implemented in the model since 2008
 - Some components are large, so with a relative precision of 5% one can have some uncertainty
 - Worse case: inner triplet quads, 500 units saturation in MQXA and 150 in MQXB
 - This can induce large beta beating after squeeze
 - For the dipole should not be an issue
 - 70 units saturation, error of a few units

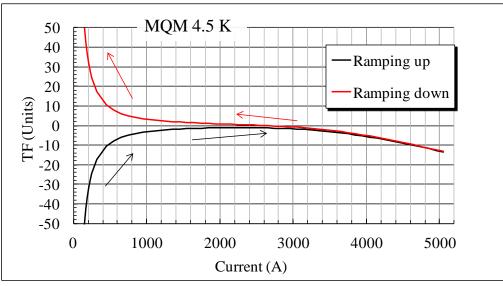
CONTENTS



- Transfer functions at 7 TeV
 - Dipole (energy, orbit)
 - Quadrupoles
- Decay and snapback
- Hysteresis
- Precycling
- Cross-checks and errors


- Decay of tune and chroma are modelled
 - Corrected on the inejction plateau 0.02 of tune, 25 units of chroma
 - Chroma snapback implemented
- Amplitude of decay depends on top energy

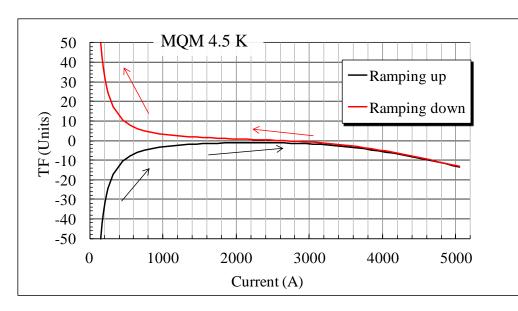
- Decay and snapback will increase of 50% from 4 to 7 TeV
 - This was measured in LHC dipoles
 - A chroma decay of 25 units will become of ~40
 - Powering history will have to be restimated


Amplitude of b3 decay at different energies [G. Montenero, N. Aquilina]

HYSTERESIS

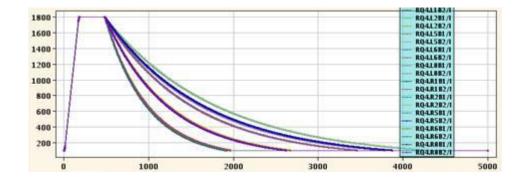
- Issue discussed since long time
 - Old nightmare of field modelers
- Some magnets ramp up and down
 - In a reproducible way: IR quads •
- - In a way determined by feedback systems and other: correctors
- Both branches are implemented in the model, but not used

Transfer function in MQM, and branching when ramping up and down[E. Todesco] E. Todesco Field model at 7 TeV - 12



HYSTERESIS

- Both branches are implemented in the model, but not used
 - Switching from one branch to the other is not obvious, and creates discontinuities
 - Hysteresis removed
 - Not an issue for correctors
 - For MQM, MQY quads: we will implement the hysteresis as a trim



β*	RQ6.L1B2/I	RQ6.L5B2/I	RQ6.R1B2/I	RQ6.R5B2/I	Error
(m)	(A)	(A)	(A)	(A)	(units)
11	1846	1850	1843	1847	2
1	668	670	667	669	11
0.9	560	561	559	560	16
0.8	431	432	430	431	25
0.7	274	274	273	274	40
0.6	239	239	239	239	52

- Proper precycling is the key of reproducibility
- Previous physics run can be used as a precycle
- At 7 TeV, no surprise, the linear part will be prolonged
 - Little space for reducing ramping time, dominated by the linear part (not possible to go faster than 10 A/s)
- For the precycling time we are dominated by IR quads

CROSS-CHECKS

- The field model has several hundred parameters
- Cross-check is a must, error is probable
- Two examples:
 - A wrong precycle found by P. Hagen in 2009
 - The minimum current of the precycle was larger than injection current, so we were on the wrong branch
 - Several transfer functions of MQY wrong by 50-100 units, found by S. Fartoukh in 2012
 - Data were reviewed by P. Hagen, good matching with trims done with beam based measurements by R. Tomas Garcia

- At 7 TeV (or 6.5 TeV) we will have strong saturation of many magnet families
 - Main issue: IR quads, precision of 10-20 units, induced beta beating,
 - Cure: corrections based on beam measurements as done in Run I
 - Should not pose problems for orbit and tune (MB and MQ)
- Decay and snapback will be 50% larger
- Hysteresis will be implemented as a trim
- Cross-check, cross-check, cross-checks ...

