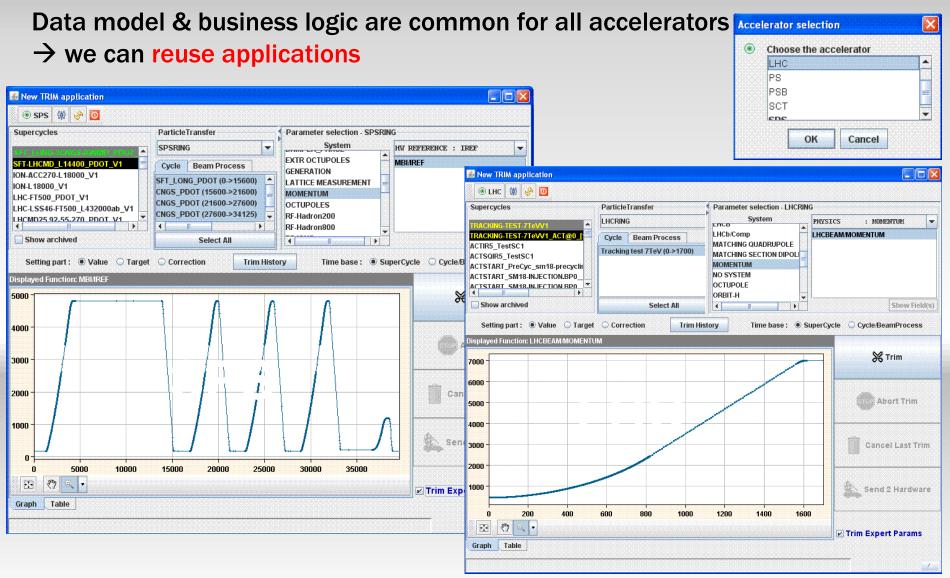
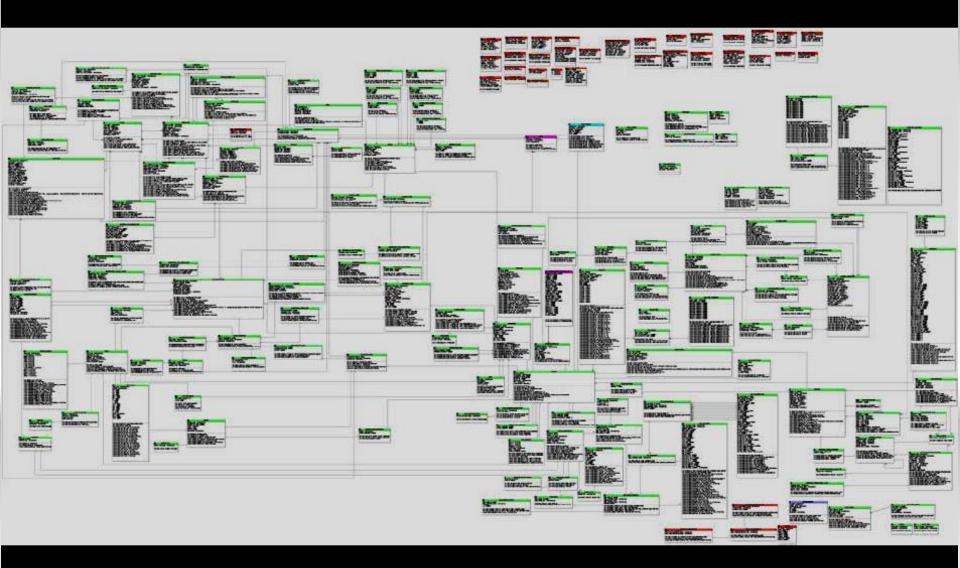

LSA Issues

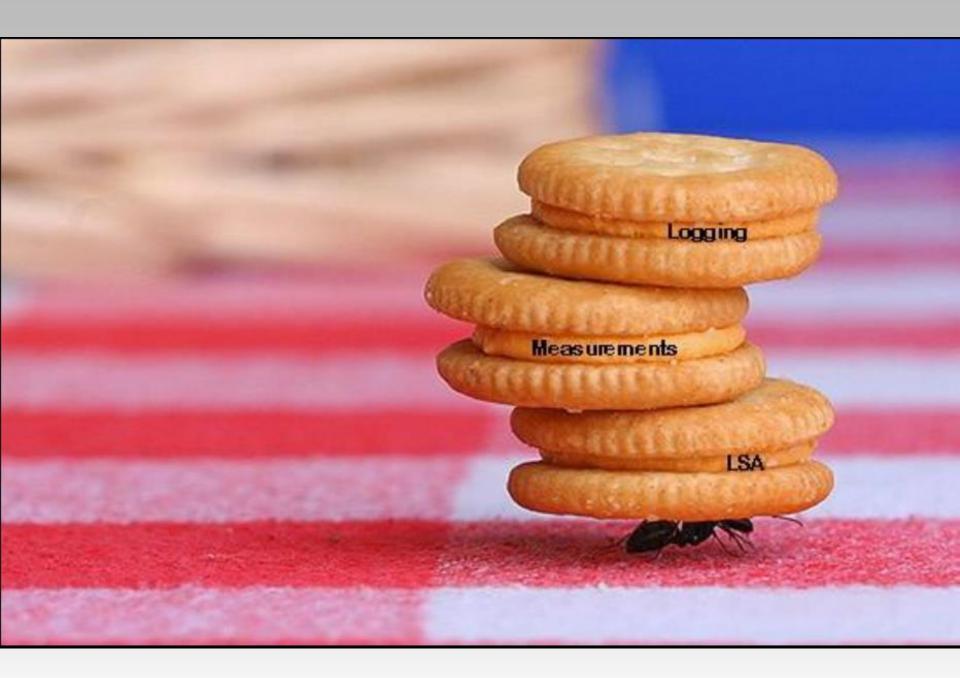

Mike Lamont

Architecture - 3-tier approach

- We wanted to deploy the system in 3 physical layers due to:
 - Central access to the database and to the hardware
 - Central security
 - Caching
 Reduced network traffic
 Reduced load on client consoles
 Scalability
 Client tier
 GUI Applications
 Business Logic
 Hardware
 Database
- With a minimal cost of 3-tier architectures
 - Complexity of programming
 - Testing & debugging
 - Deployment


Generic Applications

06/11/2007


LSA @ LHCCWG – Grzegorz Kruk

complicated data model

Chris Roderick circa 2007

representing a complicated domain

production data						
	3-tier					
Application	SPS	LHC	LEIR	PS	PSB	
EquipState	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
EquipMonitor	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Trim	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Trim History Browser	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Steering	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Drive	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Resident Sequence Management	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Global Generation	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Settings Manager	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Settings Viewer	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Parameter Viewer	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Optics Viewer	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Knob creator	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Auto trim	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
PC Measurement	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Acquire Settings	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Calibration Curves Generation	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
Parameters Configuration	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
AcceleratorMode/BeamMode	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	
LSA App Suite	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	

2-tier								
SPS	LHC	LEIR	PS	PSB	DEBUG (SPS)			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	run	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	run	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	run	<u>run</u>	<u>run</u>	run			
<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	<u>run</u>	run			

LSA/InCA changes during LS1

Among other things....

Greg Kruk

- LSA DB schema change
 - No need to change the code
 - Some attributes will be added to certain domain objects
- Repackaging of LSA modules
 - Impact all apps depending on LSA
 - Re-release to use the new products
- LSA Client APIs cleanup
 - The existing functionality won't be removed but you might need to update your code

Will make the non-backward compatible changes this year. This means that ALL the applications that use LSA APIs will have to be adapted to follow these changes.

Settings Generation

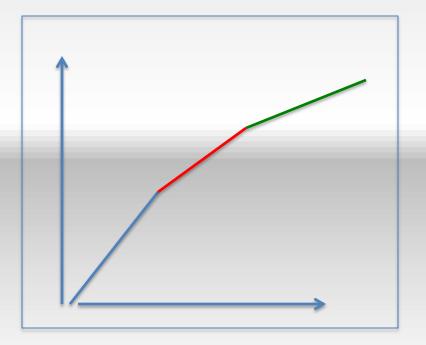
- Existing tools
 - Optics import
 - Knob upload
 - Aperture model
 - Beam process scan and anticipatory feed-forward
- From Greg:
 - Basically the three things will change:
 - Delphine is implementing the API to save new optics/twiss in LSA DB. This is to use an application rather than Perl script to do the optics upload
 - Last year Pablo implemented storage of measured Twiss parameters but I think it wasn't used yet operationally
 - We'll change slightly the lsa-client APIs and domain objects that are used to access the optic/twiss information

Including: collimations, RF, transverse feedback, BI etc. etc.

Pre-cycle and ramp-down combo

- Cycle generation data driven
 - Update relevant tables and go
 - Some tinkering required
- It will, of course, take longer
 - Ramp-down from 6.5 TeV
 - Triplets, Q4 limit circumvention? Some PC options to explore.
- Full pre-cycle
 - Dipoles to 6.5 TeV relatively fast
 - Triplets and selected IPQs to 4 TeV, say, to avoid the wait.

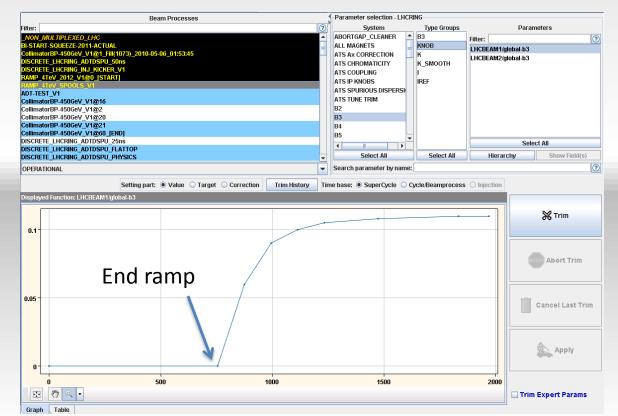
Injection


- b2,b3 decay at injection
 - Re-measure without correction
 - Update model coefficients
- Corrections applied by server (recently adopted orphan)
 - Might think about making this a little more robust
 - E.g. ability to switch hypercycles and keep book keeping straight

Ramp

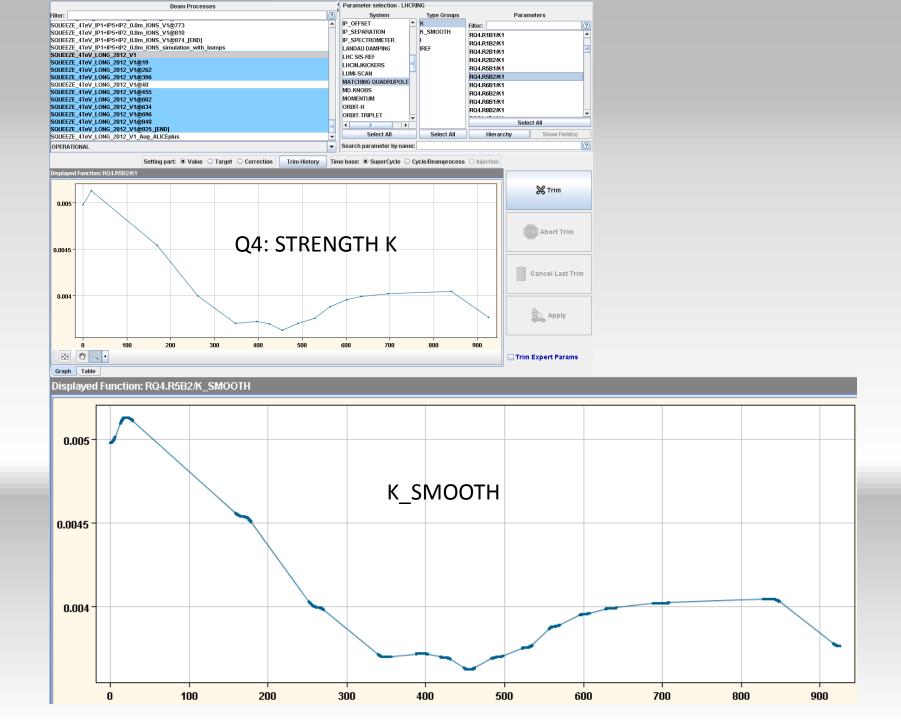
- Snapback (b2,b3,b4,b5)
 - Leave start ramp as is (pretty fast already).
 - Note suggestion by Serge Claudet to slow it down to reduce step function like change seen by cryogenics. Easily done.
 - flat-top current in on-line FIDEL, re-generate of course
 - Re-measure bare ramp, adjust model etc.

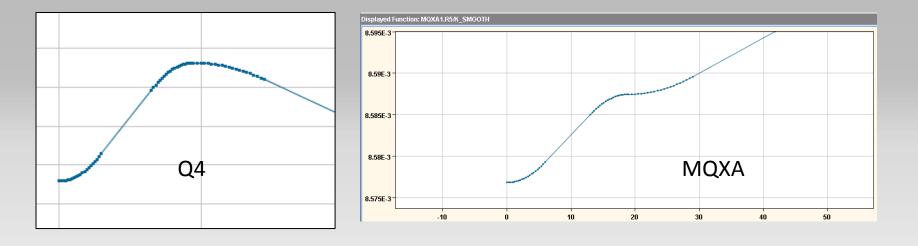
Optics change in the ramp (2 & 8)

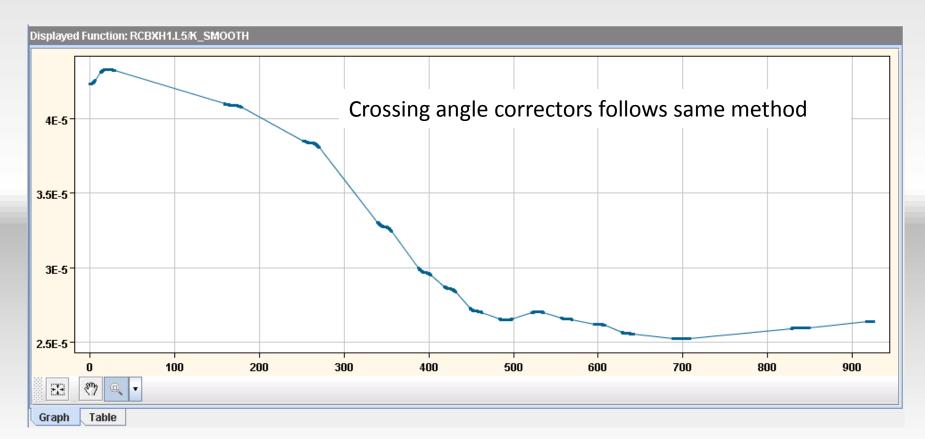

450 GeV	01
1000 GeV	01
3000 GeV	02
6500 GeV	02

Suitably spaced to avoid a significant discontinuity in the first derivative of the I(t)

Flat-top

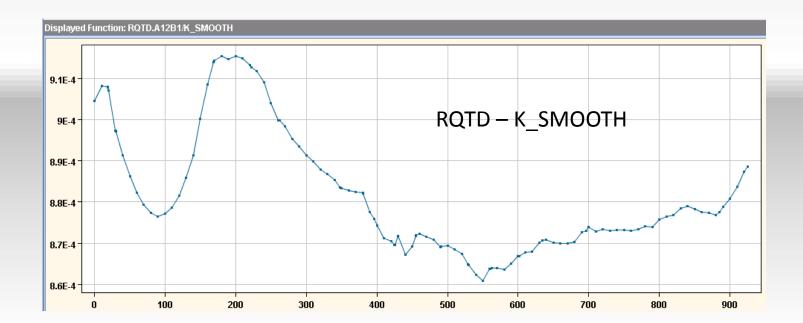

- Here we have a separate beam process for the spools, allowing function driven compensation of decay on flat top
 - Will be less significant but still worth correcting

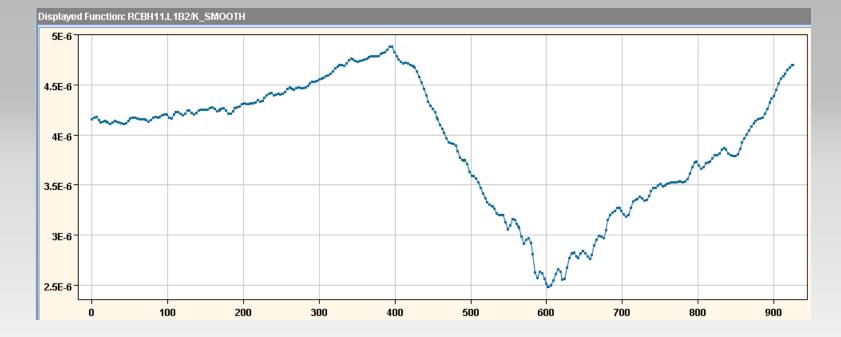


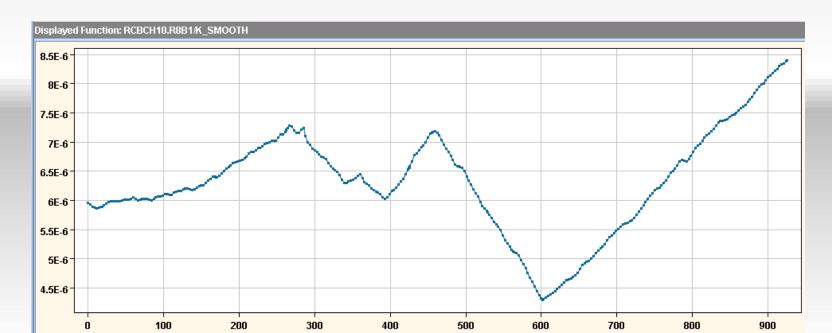

Squeeze

- Interesting problem
 - Adopted three strategies for consistent optics transitions and smooth behaviour of current functions
 - Strict parabolic linear parabolic (IPQs, triplets..) between matched optics points
 - 2. Bespoke PLP for trims between matched points
 - 3. Nothing

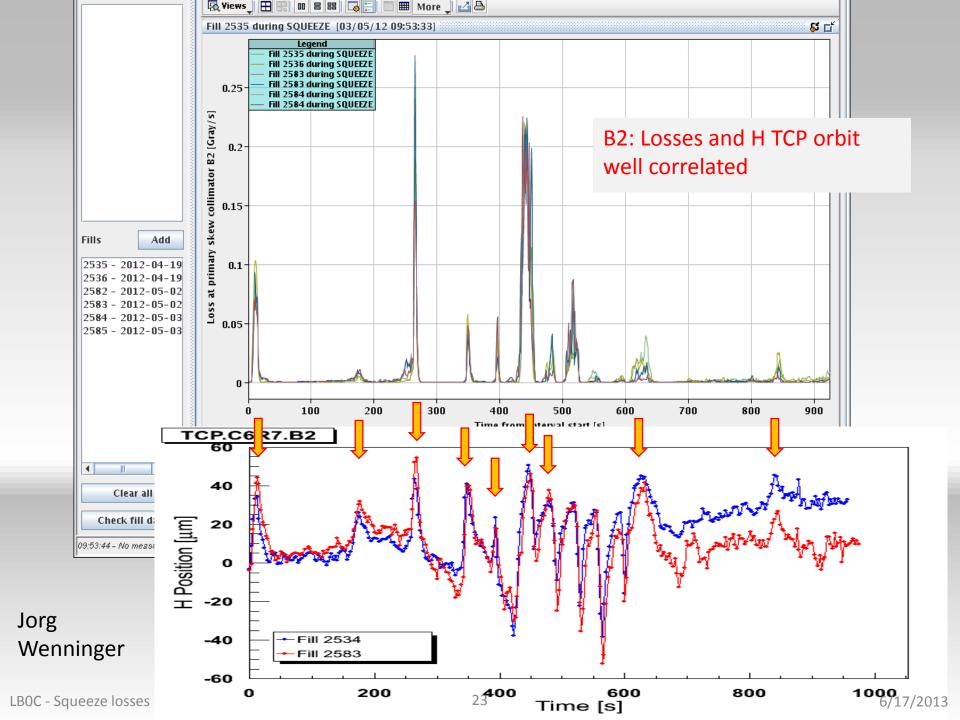
 Orbit correctors used for separation and crossing bumps follow (1)







Tune correction in squeeze – corrections anywhere in time – bespoke smoothing



Non-bump orbit correctors in squeeze following feed-forward

Squeeze spikes

- Know we're not handling this perfectly yet
 - Spikey losses in squeeze with tight collimator settings – orbit shifts at TCPs – particularly B2
 - Something provoking orbit perturbation combined with low OFB bandwidth
 - With higher bandwidth (x10) OFB could get in there.
- Feed-forward in squeeze was useful in reducing 10-12 micron peak to 2 micron peak – valid for a few weeks (ground motion perhaps...). Problem reproducible.

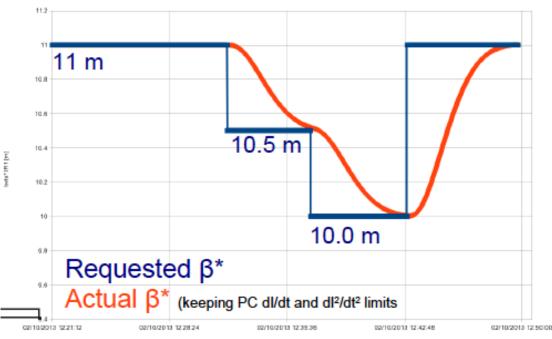
Orbit feedback in squeeze

- **Optics changes** were never fully commissioned and never used.
 - Injection optics used throughout
 - Fixing is a must for post LS1 (solution used in run 1 was a compromise and not ideal).
- Linear interpolation between overlays in squeeze
 - this should be adapted to following the paraboliclinear-parabolic scheme used by LSA.
- Model overlays used...

Collision

- Combined IP1, IP5, IP2, and tilting the crossing angle in 8 was not a good idea!
- Keep it simple
- Speed stuck with it
- Staggered collisions if really necessary

Miscellaneous


- IPQ hysteresis
 - Continue to ignore (following last attempt)
- Use of triplet multipole correctors
 - Implement in terms of b3, a3 etc. compensation trims polarity issues!
- Current tracking in the squeeze
 - Decay of single quadrant power converter driven IPQs
 - Model still not quite right.
- Systematic b2 correction?
- LSA database slow regeneration and incorporation

Out of the LSA box – RT squeeze

- Initial test successful earlier this year
 - Squeezed and un-squeezed (11 to 10 m) in IR1
 with beam as proof of principle
- Offers flexibility and an "adiabatic" approach
 - De-couple IPs
 - Orthogonal to orbit feedback
 - Incremental approach allow re-optimization in the steady state as required

RT squeeze

Allows arbitrary changes (test on 2013-02-10, RS & ML):

N.B. naked squeeze in IR1 only with no prior orbit, Q/Q' corrections included. 2nd-order feed-down effects on tune and orbit clearly observed. Beam lifetime OK throughout test → to be further studied/explored for after LS-1

Conclusion

- LSA is in a pretty good state and its reach is growing
 - Many thanks to Greg Kruk, Chris Roderick and the small core team
 - Significant consolidation planned for LS1
 - Many thanks to developers (OP, COLL, ABP...) for some truly exceptional functionality
- With applied LSA there are some issues, development, and preparation required for 2015 but imagine things coming back in a familiar shape