Improvements in optics measurement resolution and error reconstruction.

Andy Langner, Rogelio Tomas

European Organization for Nuclear Research (CERN) & Universität Hamburg

LHC Optics Measurement and Corrections review, 18.06.13

Optics measurement improvements

- Segment-by-Segment technique
- Summary / Outlook

Optics measurement.

Optics measurement.

- Oscillation will be excited on the beam (Kicker, AC Dipole)
- Turn-by-turn data from the BPMs is recorded
- \rightarrow Harmonic analysis \rightarrow phase advance of betatron oscillation
 - Phase advance of 3 BPMs can be used to derive optical parameters

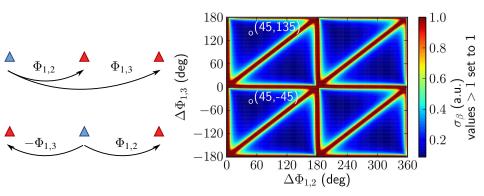
$$\beta_{\mathsf{BPM 1}} \propto \cot(\Phi_{1,2}) - \cot(\Phi_{1,3})$$

$$\beta_{\mathsf{BPM 2}} \propto \cot(\Phi_{1,2}) + \cot(\Phi_{2,3})$$

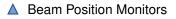
$$\beta_{\mathsf{BPM 3}} \propto \cot(\Phi_{2,3}) - \cot(\Phi_{1,3})$$

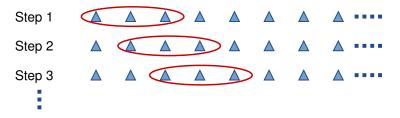
$$\Delta \Phi_{1,3}$$

$$\Delta \Phi_{1,2}$$

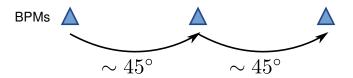

$$\Delta \Phi_{2,3}$$

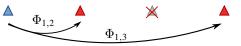
$$\mathsf{BPMs}$$

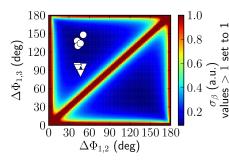

Resolution depends on phase advances


Resolution dependency of the phase advances.

- Conditions on the phase advance for optimal resolution:
 - Phase advance from probed BPM to the two other BPMs should be close to $(45^{\circ} + n \cdot 90^{\circ}, n \in \mathbb{N})$
 - Avoid phase advances of $(n \cdot 180^\circ, n \in \mathbb{N})$ in between BPM pairs


Implementation of the current algorithm.


- Algorithm goes step by step through all available BPMs
- Every set of three neighboring BPMs is used to calculate the optical functions at the three BPM positions
- → For every BPM position the optical functions are calculated 3 times and averaged

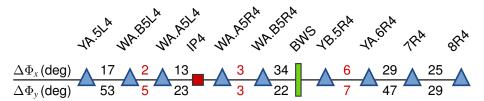

Situation in the arcs.

- In general the phase advance between BPM pairs is at about 45°
- This is the optimum for the case that the probed BPM is in between the other two
- For the case that the probed BPM is left or right to the other two BPMs the phase advances are at about 45° and 90°
- $\rightarrow\,$ In the later case a phase advance of 45° and 135° with respect to the probed BPM would be better

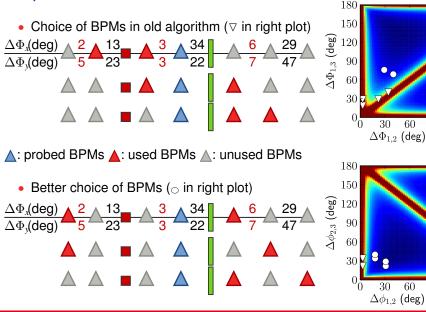
Improvements for the arc.

▽ current algorithm○ different BPM choice

BPM	Current	Skip BPM for						
15R4	Algorithm	135° in edge						
β_x (m)	31.1	30.7						
Error propagation from $\Delta\Phi$								
$\sigma_{eta_{x},1}$ (m)	0.21	0.17						
Standard deviation (3 BPM sets)								
$\sigma_{eta_{x},2}$ (m)	0.22	0.43						
eta_y (m)	168.85	168.86						
Error propagation from $\Delta \Phi$								
$\sigma_{eta_{\mathrm{v}},1}$ (m)	1.69	1.03						
Standard deviation (3 BPM sets)								
$\sigma_{eta_{y},2}$ (m)	1.93	2.04						


- Propagated error from phase decreases, but standard deviation increases
- Model uncertainties contribute more if further away BPM are used

A. Langner (CERN)


Improvements in optics measurement resolution

Situation in the IRs.

- In the interaction regions (IRs) the phase advances between BPM pairs differ from 45°
- In many cases smaller phase advances, in some cases even just a few degree
- Sketch shows phase advances for BPMs close to IP4

Improvements for IR4.

60 90

60 90 5

set

a.u. 0.2

5

set

a.u. 0.2

 σ_{β}

0.8

0.6values

0.4

0.8

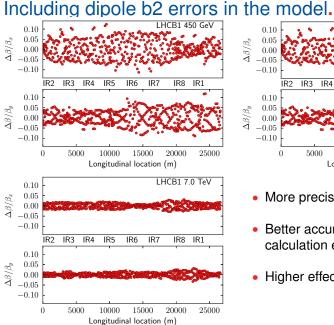
0.6values

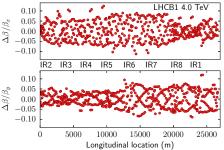
0.4

Improvements for IR4.

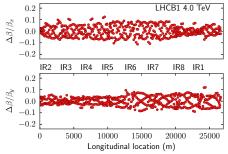
BPMWA B5R4	Current Algorithm		BPMYB B5R4	Current Algorithm	Optimized BPM sets
β_x (m)	183.1	190.2	β_x (m)	197.6	191.8
Error propagation from $\Delta\Phi$			Error propagation from $\Delta\Phi$		
$\sigma_1\beta_x$ (m)	23.7	2.1	$\sigma_1\beta_x$ (m)	15.6	3.0
Standard deviation (3 BPM sets)			Standard deviation (3 BPM sets)		
$\sigma_2\beta_x$ (m)	2.4	0.2	$\sigma_2\beta_x$ (m)	1.7	0.7
β_y (m)	174.0	167.1	eta_y (m)	405.1	407.7
Error propagation from $\Delta\Phi$			Error propagation from $\Delta\Phi$		
$\sigma_1 \beta_y$ (m)	21.5	1.9	$\sigma_1\beta_y$ (m)	32.9	4.6
Standard $\sigma_2\beta_y$ (m)	deviation (3 4.6	BPM sets) 0.2	Standard $\sigma_2\beta_y$ (m)	deviation (3 9.1	BPM sets) 3.3


Improvement of one order of magnitude on the error bar!

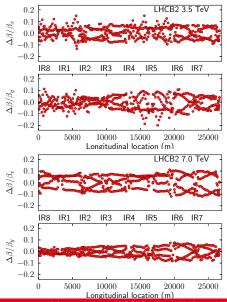

Implementation of a new algorithm.


- ▲: probed BPMs
 ▲: used BPMs
 ▲: unused BPMs
- Old algorithm
 - 3 BPM sets of the nearest neighbors per BPM position
 - Final optical functions are the average from the 3 BPM sets
- New algorithm
 - One additional BPM right and left of the probed BPM are used
 - → 15 combinations of BPM sets
 - → The 3 BPM sets which feature the lowest errors are chosen and averaged

A. Langner (CERN)

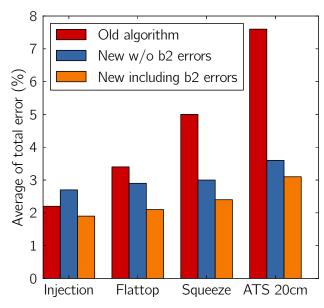


A. Langner (CERN)

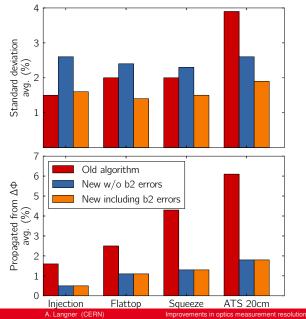


- More precise model
- Better accuracy for the beta calculation expected
- Higher effect at lower energy

Including dipole b2 errors in the model. Nominal ATS 20cm

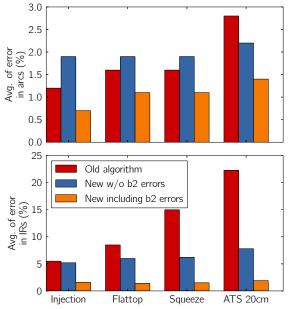


- Similar effect for nominal and ATS optics at 3.5 and 4 TeV
- In ATS optics the effect is not significantly reduced for 7 TeV


Improvements in optics measurement resolution

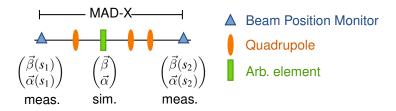
Errors bars of measured betas.

- Averaged $\Delta\beta$
- Errors larger than 200% were removed
- b2 dipole errors increase precision of the measurement


Two contributions to the error bar.

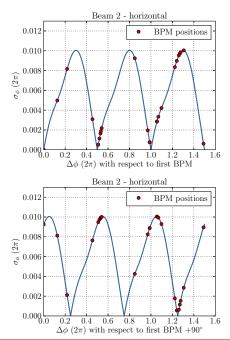
- New algorithm improves significantly errors propagated from $\Delta \Phi$
- Standard deviation is more sensitive to the model

→ improves when using b2 errors

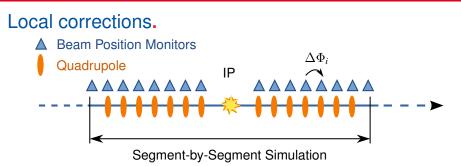

Error bars in arcs and IRs.

- Largest errors are in general in the IRs
- Here the algorithm shows the strongest improvements
- Errors in the arcs already on a low level
- Can be slightly improved with the new algorithm in combination with b2 errors

Segment-by-Segment technique.


Segment-by-Segment.

- Transport of optical functions from a BPM position
- Technique for investigating local corrections
- Calculation of optical functions at specific elements
- Uses measured optical function at starting point of simulation

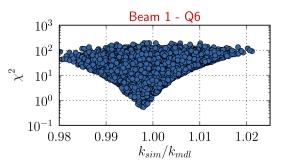

Systematic errors.

- Errors on the measured β- and α-functions propagate to an error of the phase advance → so far not taken into account
- Error on phase advance has minima
- Usually different start positions are favorable for horizontal and vertical plane
- Separate both planes
- → Local corrections might be better constrained by using 2 segments with starting location separated by $\approx 90^{\circ}$

Systematic errors.

- The propagation of $\Delta\beta$ and $\Delta\alpha$ is estimated by simulating several cases with $\beta_0 \pm \Delta\beta$ and $\alpha_0 \pm \Delta\alpha$ at the start position
- Both errors can be analytically estimated
- Together with the errors on the simulated phase, a more sophisticated error treatment is possible
- → Useful for local correction techniques
- → Important for calculating optical functions at specific elements

- Monte-Carlo Approach to fit optics to measured constraints
- Vary quadrupole strengths $\Delta k \rightarrow \frown$ and long. positions Δs


→ Variation of simulated phase advances $\Delta \Phi_{i,Sim}$

• Minimize
$$\chi^2 = \sum_i \left(\frac{\Delta \Phi_{i,Meas} - \Delta \Phi_{i,Sim}}{\sigma(\Delta \Phi_i)} \right)^2$$

A. Langner (CERN)

Local corrections.

- This method is currently investigated in IR1 in combination with constraints from ALFA detector measurements
- In general this method can be applied on other IRs as well

- $\rightarrow \beta$ -function propagation benefits from a better knowledge of the optics
- → Precise calculation of optical functions (new algorithm) will help further → Lower uncertainty of start values of the Segment-by-Segment simulation

Summary.

- Improved algorithm for β -function calculation studied
 - Significant improvements on the error bars
 - Precise knowledge of the model (b2 errors) crucial
- Foressen improvements for Segment-by-Segment
 - More sophisticated error treatment
 - Monte-Carlo approach for local corrections
- Propagation of β-function to specific elements will benefit from these improvements

Thank you for your attention.