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Motivations

● Amplitude detuning measurement provides a handle on how well the non-linear 
model is understood

● Lots of discussion last year regarding Landau damping and beam stability: 

● How does the machine detuning contributes to the overall detuning (long-range beam-
beam , Landau octupoles)? 

● Is there any compensation effects?

● The tune kicker is effective at injection. Large amplitude can be reached and fresh 
beams can be injected when the emittance becomes too large

● This is not the case at top energy. The AC dipole provides a non-destructive 
alternative allowing for large amplitude excitation at any energy
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Principle

In the presence of non-linear fields the tune becomes amplitude dependent. Its behavior can
be modeled by a polynomial of the form:
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where ϵ=2J and J is the action (normalized oscillation amplitude)

Measuring the tune as function of oscillation amplitude and applying a polynomial fit
allows for a direct measurement of the detuning coefficients

→ Example of amplitude detuning measurement
at the LHC

→ Done at injection energy using the tune kicker

→ Reference: E. Maclean et al. “Non-linear beam 
dynamics tests in the LHC: LHC dynamic aperture 
MD on Beam 2”
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Tevatron experience

→ Reference: R. Miyamoto, PhD thesis

→ In the presence of detuning the beam
response is non-linear with driven
oscillation amplitude

→ This behavior provide information
on detuning coefficient

→ Measurements taken with strong
octupolar field

→ Plain curve is the linear case

→ Dashed curves represent a fit of the
AC dipole ramp: could be used to derive
the detuning – indirect measurement
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Hamiltonian with AC dipole

The Hamiltonian describing the linear motion of a single particle in the presence of AC dipole
can be expressed as:

is the focusing strength and is the time dependent kick from the AC dipole

In the case of free oscillations the transverse coordinates can parametrized as:

For horizontal AC dipole excitation x(s) becomes:

→ The term J
x
 is driven by the non-adiabaticity of the ramping process of the AC dipole: in

the presence of chromaticity of non-linearity it should be possible to observe the natural 
tune (R. Tomas “Adiabaticity of the ramping process of an AC dipole” PRSTAB 8, 024401). 
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Amplitude detuning

Using the perturbative approach, the Hamiltonian in the presence of non-linear field becomes
H
0
+H

1
, where H

1
 (perturbation Hamiltonian) is given by:

and are the normal and skew coefficients of the expansion of the magnetic 

field of a multipole of order m. Considering the case of a normal octupole:

The detuning is given by:

Using the parametrized coordinates in the presence of AC dipole we get:

and

→ The direct term of the detuning measured with a single kick (A=0) is a factor 2 smaller
than the one measured with AC dipole (A>>J). Effect of the AC dipole on optics are assumed
negligible (β'=β). The cross term is not affected. 
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Multipole of order 2n

The perturbation Hamiltonian of a multipole of order 2n is expressed as:

This gives for the detuning coefficient in the case of free oscillations:

And in the case of driven oscillations

→ Factor n difference between free and driven oscillation for the direct term
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Single particle tracking

→ Built a simple tracking code allowing to study  driven oscillation in the presence of arbitrary
non-linear field components (behavior also checked with MADX, much slower)

→ Start with a single multipole: excellent agreement between theory and tracking up to a 
B

10 
magnetic field component
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Combination of several orders

→ Repeat the same study with the combination of several multipoles from B
4
 to B

10

→ Again an excellent agreement is observed between theory and tracking, the under-
estimation using free oscillation model is clearly observed
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Full LHC non-linear model

→ MADX model constructed using a thin lattice with magnetic field errors from WISE of
order from (B

3
, A

3
) up to (B

15
, A

15
). Includes second order effects. Example of flat top optics

in this case

→ The model detuning coefficients are computed using PTC, the tracking is performed using
the AC dipole module in MADX

→ The detuning is dominated by the octupolar field components: a factor 2 difference is 
observed between PTC and AC dipole tracking – consistent with theory
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Uncertainty due to coupling

→ Uncertainties on the model apply in the presence of coupling or misalignments. Due to 
technical limitation in MADX and PTC only the effects of coupling could be studied

→ Distribution generated from random distribution of coupling amplitude and phase

→ Uncertainties of the order of 20% for the direct term and 100% for cross term were 
derived from these simulations
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Natural tune measurement

→ Although the natural tune spectral should be excited during the ramping process due to
the non-linearities its amplitude remains much lower than the drive spectral line and most
of the time below the noise floor

→ Noise removal is possible using SVD post-processing of the data keeping only the modes
with physical meaning for data analysis: SVD “cleaning” of the raw data allows to clearly
observe the natural tune spectral line (left) and reduces the spread from all BPMs (right)
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Non-linear resonances

→ Non-linearities not only allow to observe the natural tune but also excite non-linear
resonances: should be avoided if possible

→ This was strongly observed in the cross plane data and degraded the data quality
and our ability to cleanly measure the natural tune

→ Here an example of an octupolar resonance which frequency was measured during the
amplitude scan. Expected and measured frequencies are in good agreement 
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Squeezed optics measurements

→ The importance of non-adiabaticity
can be estimated by looking a the ratio
of drive and natural tune spectral line

→ Horizontal plane is constant. Increase
in the vertical plane is attributed to coupling 

→ Disagreement of a factor 2-3 between 
the data and the model

→ Measurement taken after non-linear 
correction: only very small errors left: 
How well are they understood?
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Summary

● Amplitude detuning equations in the presence of AC dipole were derived using the 
perturbation Hamiltonian:

● Valid for multipoles of arbitrary order

● Driven oscillations cannot be approximated by the free oscillation model :correction factors are 
required

● Direct amplitude detuning measurement with AC dipole is possible

● Experimental protocol well defined:

● SVD cleaning essential for natural tune measurement

● Some optimization required (working point, excitation of resonances,...) - see next slide

● 2012 MD results:

● First direct amplitude detuning measurement using AC dipole performed at the LHC

● Disagreement of a factor 2-3 between measurement and model

● Done after non-linear corrections: remaining errors are very small and possibly not well understood: 
difficulties to build an accurate model

● Uncertainties associated to misalignments could not be assessed

● Very nice achievement for a first try, lots of lessons learned
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Outlook

● Possible improvements:

● Coupling: keep the tunes well separated avoid driving in between Q
x
 and Q

y
 (as was done in 

2012)

● Non-linear resonances: single plane excitation – carefully choose the working point

● Drive to larger amplitudes: have a single bunch 

in the machine would reduce the losses

● Model: perform the measurement without 

non-linear corrections as a first check-

effect of misalignments?

● Experimental proof of theoretical 

derivations:
● Repeat at injection with strong octupoles – 

scan octupole current

● Compare single kick data with AC 

dipole data: model independent

→ Maybe a first hint of experimental 
proof at the LHC?
→ Data taken during the non-linear 
MD at injection

Slopes:
-kick (gray): -0.012
-ACD (blue): -0.026
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Thank you for your attention!
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