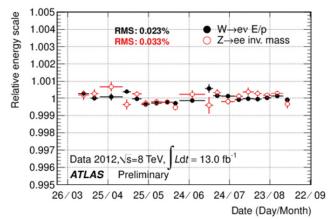
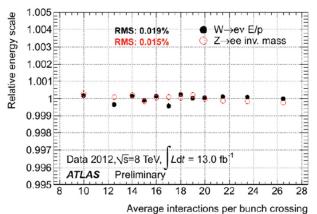

Summary of Higgs Results from ATLAS

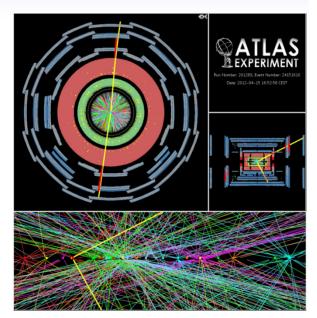
Paul Thompson (University of Birmingham) On behalf of the ATLAS Collaboration* Triggering Discoveries in High Energy Physics Jammu, September, 2013

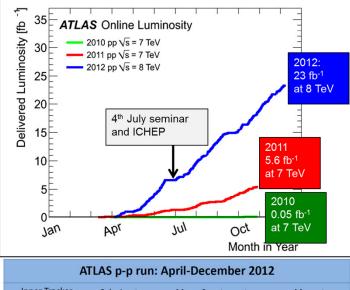
Muon Spectrometer ($|\eta|$ <2.7) : air-core toroids with muon chambers (tracking and trigger) to measurement with momentum resolution < 10% up to E_µ ~ 1 TeV



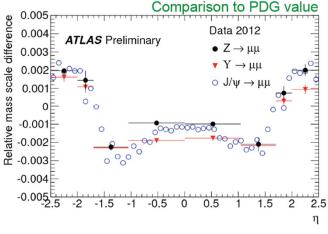

EM calorimeter: Pb-LAr Accordion e/ γ trigger, identification and measurement E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$ HAD calorimetry ($|\eta|<_5$): segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

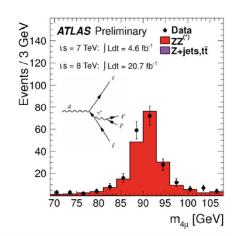
Everything worked!


Electrons


Stability of EM calorimeter response vs time/pile-up better than 0.1%

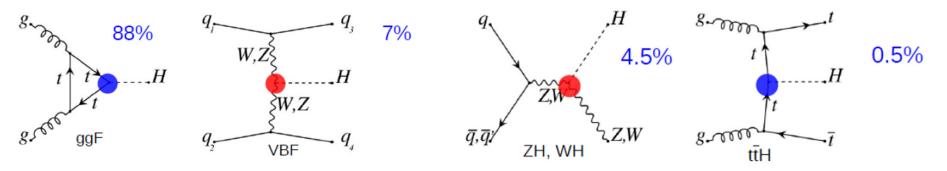
Challenging pile-up

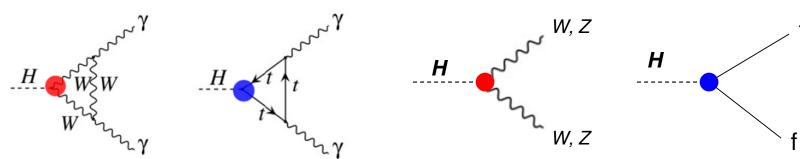




	Inner Tracker			Calorimeters Muon			on Spe	ctrome	ter	Magnets	
	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
-	99.9	99.1	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5

All good for physics: 95.5%

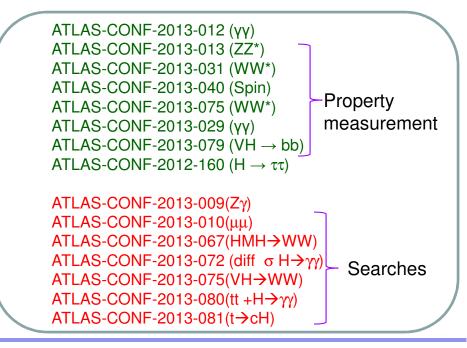

Muons




Is the New Boson The SM Higgs?

✤ Higgs production (m_H = 125 GeV)

Higgs decays


New -- After the Higgs Discovery

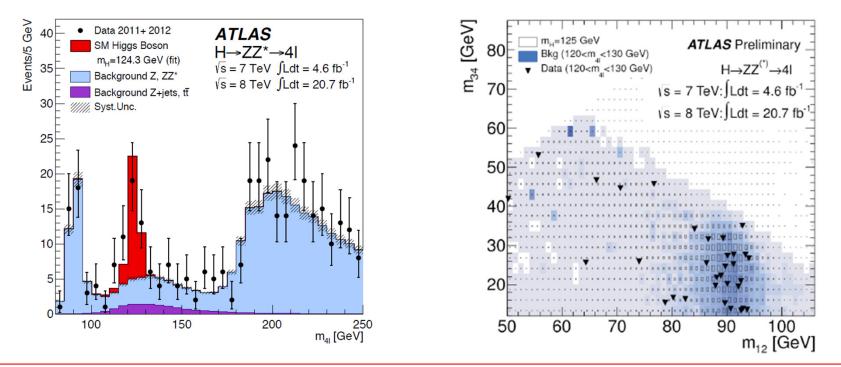
- $H \rightarrow \gamma \gamma$, ZZ*, WW* analysis updates based on full 2011-2012 dataset (4.6 fb⁻¹ @ 7TeV, 20.7 fb⁻¹ @ 8TeV)
- Higgs mass from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$
- Signal strengths ($\mu = \sigma/\sigma_{SM}$)
- Sensitivity to vector boson fusion (VBF)
- Comparison of decay rates
- Couplings
- Spin and parity
- Searches in rare decay modes

New ATLAS Higgs Papers

arXiv:1307.1427 Sub. Phys. Lett. B (Mass, Couplings) arXiv:1307.1432 Sub. Phys. Lett. B (Spin-parity)

New ATLAS Higgs Pub Notes

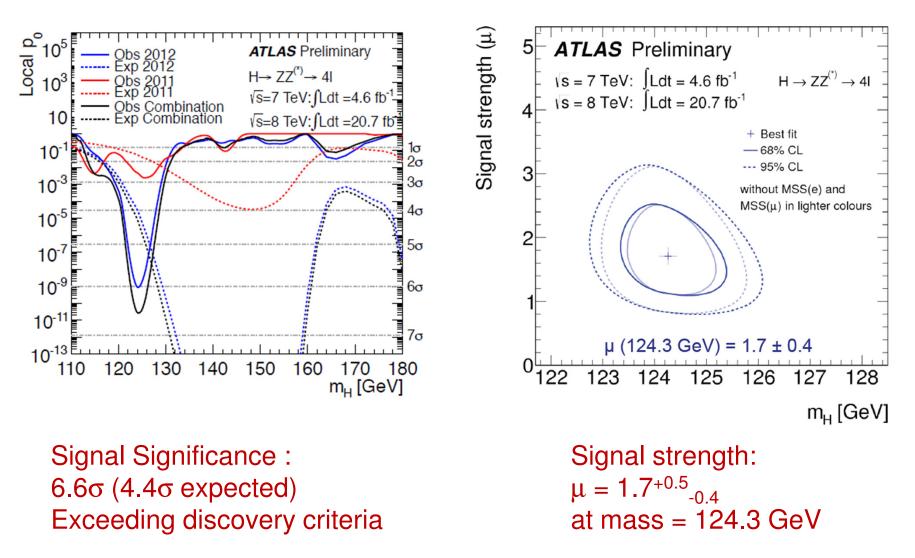
Update on $H \rightarrow VV$ ZZ*, $\gamma\gamma$, WW*, Z γ


$H \rightarrow ZZ^* \rightarrow 4I$

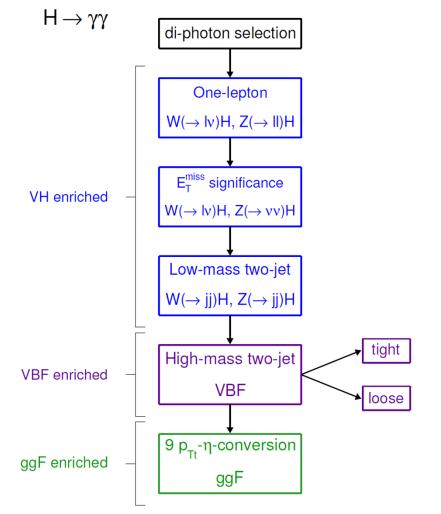
arXiv:1307.1427

BR (H \rightarrow ZZ^{*}) = 2.63% (M_H= 125 GeV). Total ~65 H \rightarrow ZZ^{*} \rightarrow 4I events produced at LHC

DataSet	Production	background	Exp. Signal	S/B
~25 fb ⁻¹	ggF, (VBF,VH)	ZZ*, Z+X, tt	~16	~1.4


Events in 3 categories: VBF(jets), VH(lepton) and ggF-like (the rest)

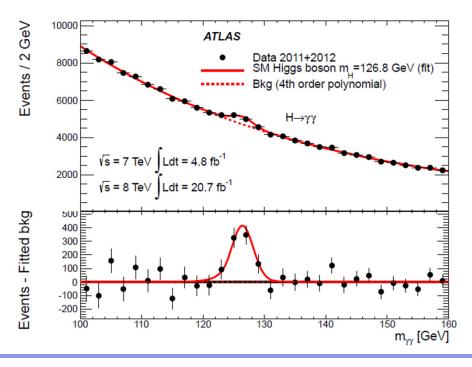
Huge effort on lepton ID efficiencies, and calibration of mass scale for m_{\parallel} and $m_{4\parallel}$


$H \rightarrow ZZ^* \rightarrow 4I$

arXiv:1307.1427

arXiv:1307.1427

Flow-chart of the event categorisation

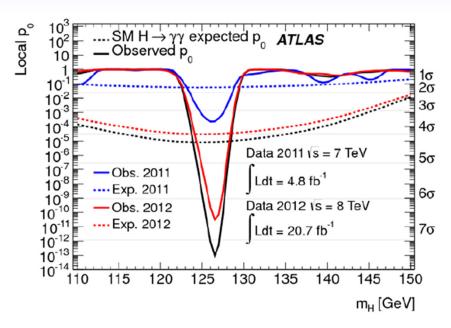


□ Simple signature: two high-p_T isolated photons - $E_T(\gamma_1, \gamma_2) > 40, 30 \text{ GeV} (\sqrt{s=8 \text{ TeV}})$

Events divided into 14 categories based on production mode and S/B ratio in different detector region (increase sensitivity, also for coupling measurements)

Main channel with sensitivity to VBF production

 $H \rightarrow \gamma \gamma$


$H \rightarrow \gamma \gamma$

2.5

+

ATLAS Preliminary

Η→γγ

Signal Significance : 7.4 σ (4.3 σ expected) Exceeding discovery criteria

2 1.5 Is=7 TeV, Ldt=4.8 fb⁻¹ 68% CL 95% CL s=8 TeV, Ldt =20.7 fb 0.5 125 126 127 128 129 130 124 m_H [GeV] Signal strength $\mu = 1.57 \pm 0.24$ (stat) ± 0.22 (syst)

at mass = 126.8 GeV

All systematics

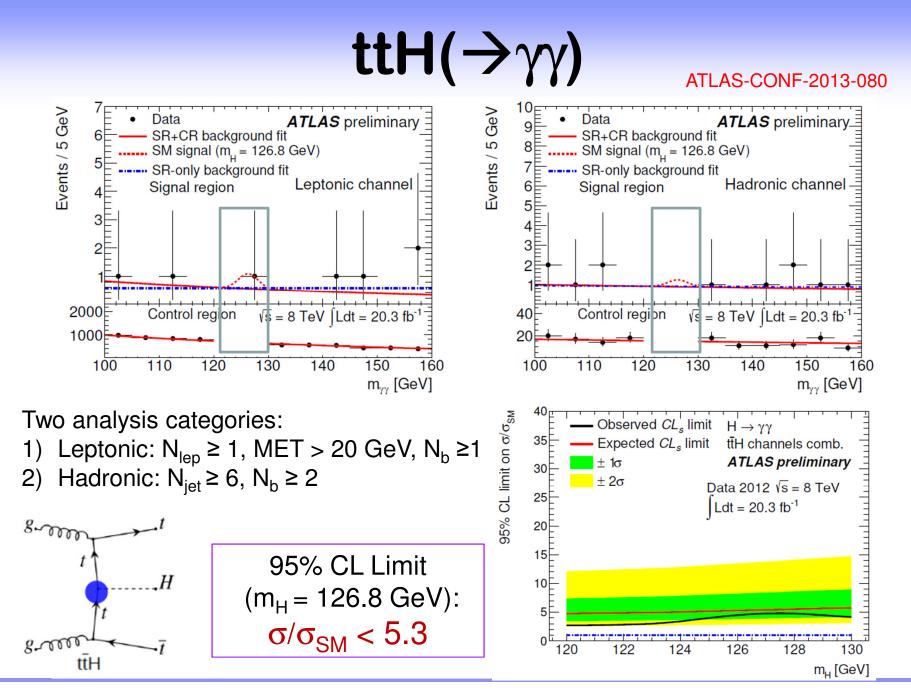
Best fit

Without systematic

Without mass scale uncertainties

Obs (√s=8 TeV, m _H ^{rec} = 126.8 GeV ±2σ)	Expected purity s/s+b (√s=8 TeV)	Main backgrounds		
13931	370/13575 = 2.7%	γγ,γj and jj		

$H \rightarrow \gamma \gamma$ Differential Cross-Sections $\bigotimes gg \rightarrow H$ NLO+PS (PowHEG+Py8) + XH ATLAS-CONF-2013-072 350 --- $XH = VBF + VH + t\bar{t}H$ 300 $H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$ 250 Study the kinematic distributions of $H \rightarrow \gamma \gamma$ events L dt = 20.3 fb⁻¹ 200 Recon. 150 To unfold the experimental measured distributions to level 100 particle level distributions (differential $d\sigma/dx$) 50 Variable syst. un gg→H NLO+PS (PowHeg+Py8) + ; ≥3 (H = VBF + VH + tTH Reconstructed Niet $p_T^{\gamma\gamma}$ L dt = 205đ ATLAS Preliminary + syst. unc data H→γγ, √s = 8 TeV Pilid 30 $|y^{\gamma\gamma}|$ ag→H NLO+PS (PowHEG+Py8) + XH $\int L dt = 20.3 \text{ fb}^{-1}$ aa→H+1i NLO+PS (MINLO HJ+PY8) + XH VBE + VH + fTH Inclusive $\cos \theta^*$ $H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$ 700 Particle $\int L dt = 20.3 \text{ fb}^{-1}$ 600 Niets level 10 p_T^{j1} $\Delta arphi_{jj}$ 2-jets ≥3 Reconstructed Niet Jata-Bkg $p_T^{\gamma\gamma jj}$ ≥3 Particle level Nin > Bin events in interesting variables ATLAS Preliminary - data syst. unc. gg→H NLO+PS (POWHEG+Py8) + XH \succ Background estimations from the myy side-band fit $H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$ aa→H+1i NLO+PS (MNLO HJ+Py8) + X L dt = 20.3 fbin each bin 00 Cross-Estimate the systematics Section 0.6 Background subtraction in each bin 0.5 ratio 04 > Unfold the reconstructed distributions to truth

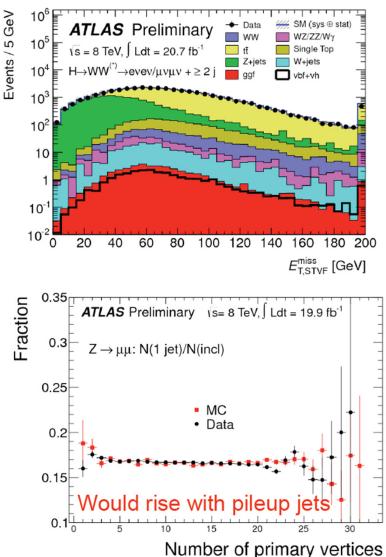

0.6

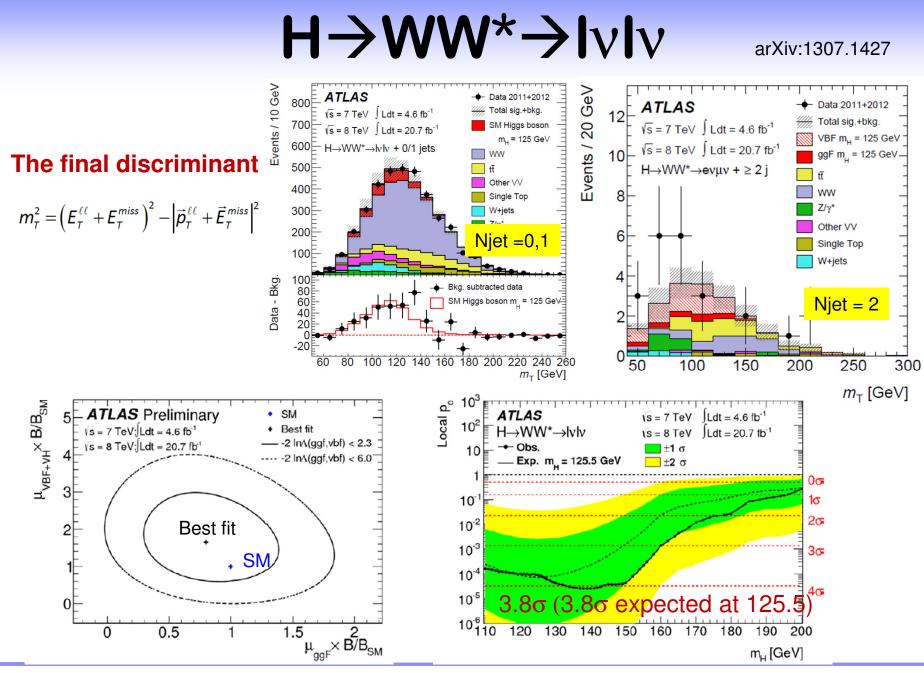
 $\sigma_0 / \sigma_{>0}$

 $\sigma_2 / \sigma_{\geq 2}$

 $\sigma_1 / \sigma_{>1}$

distributions (\rightarrow differential cross-sections)




$H \rightarrow WW^* \rightarrow I_V I_V$

- ee,eµ,µµ + 2ν final state: two isolated opposite-sign leptons, large E_T^{miss}
- N_{jet} classification (0,1, >= 2 jet) to separate ggF and VBF processes
- Main backgrounds: WW, Wt, top, W+jets, Z+jets
- ~80% of overall significance from eµ channel (large DY background for ee and µµ channels)
- Experimental challenge in measurements: E_T^{miss}, Njet (JES)

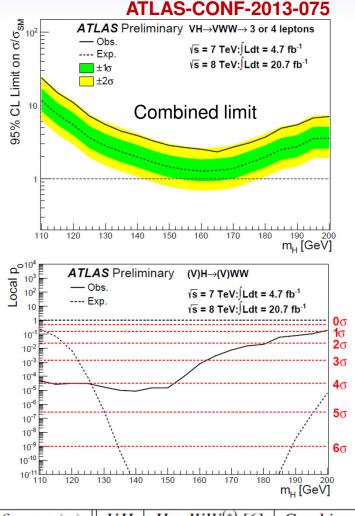
Observed (N _{jet} = 0, 1, >=2) ~25 fb ⁻¹	Expected purity s/s+b (√s=8 TeV)
831, 309, 55	152 /1188 = 12.8%

arXiv:1307.1427

$Z/W (\rightarrow II/Iv) + H (\rightarrow WW^* \rightarrow IvIv)$

 $WH \to WWW^* \to 3\ell + \mathcal{E}_{\tau} ZH \to ZWW^* \to 4\ell + \mathcal{E}_{\tau}$ Lepton $p_{\tau} > 10 - 25$ GeV, $\mathcal{E}_{\tau}^{rel} > 25 - 40$ GeV

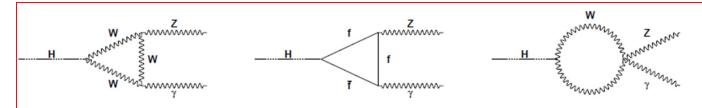
3I analysis Data/MC, Total WWW contribution ~5.1 events

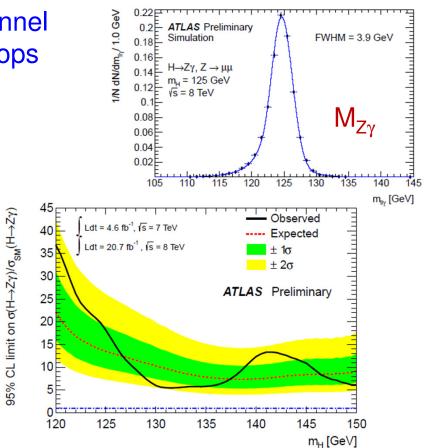

	Data	MC	Data/MC
WZ* CR	439	438 ± 24	1.00 ± 0.07
ZZ* CR	244	210 ± 40	1.15 ± 0.23
Z+jets CR	828	860 ± 40	0.96 ± 0.06
Top CR	6	6.2 ± 1.1	1.0 ± 0.4

4I analysis Data/MC, ZWW contribution ~0.6 events

	$Z(H \to WW)$	Data	MC	Data/MC
ZZ CR	0.03 ± 0.00	100	100.00 ± 3.19	1.00 ± 0.10

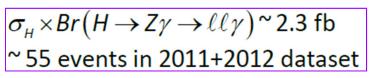
95% C.L. observed (expected) upper limit on the rate/SM at 125 GeV: 7.5 (4.0) for WH and 14.3 (9.6) for ZW

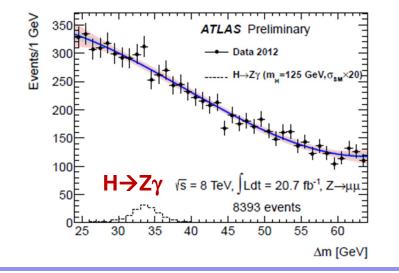

Observed small excess at 125 GeV: 1.7σ (WH \rightarrow ww), 1.5σ (ZH \rightarrow WW)

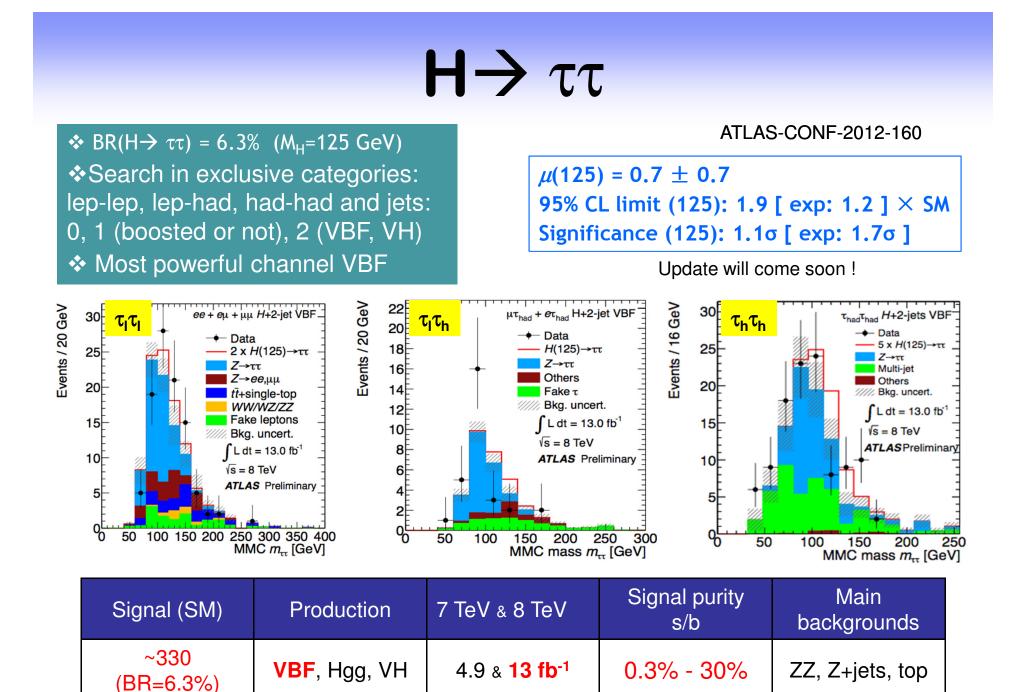

significance (σ)	VH	$H \rightarrow WW^{(*)}$ [6]	Combined
expected	0.7	3.7	3.8
observed	2.0	3.8	4.0

$H \rightarrow Z\gamma \rightarrow II\gamma$

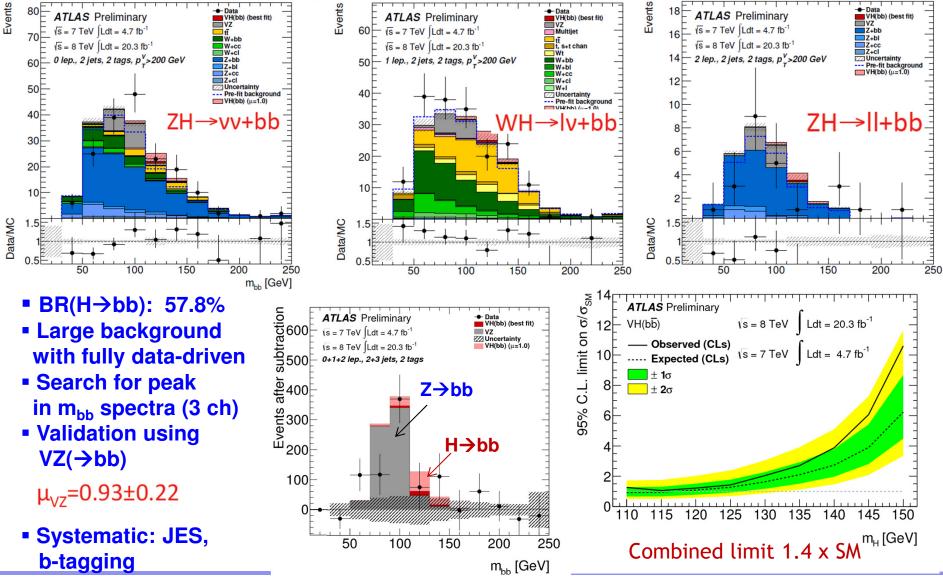
ATLAS-CONF-2013-009



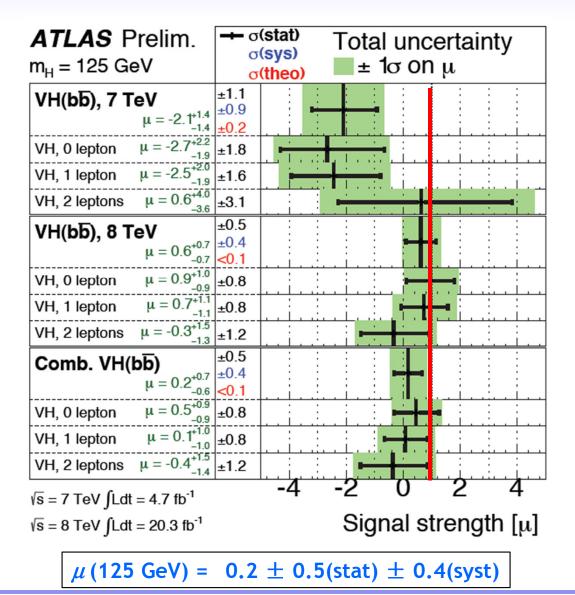

$BR(H \rightarrow Z\gamma) = 0.15\%$


• $H \rightarrow Z\gamma$ is another high resolution channel

- Sensitive to new particles through loops
- For SM Higgs with mass = 125 GeV:

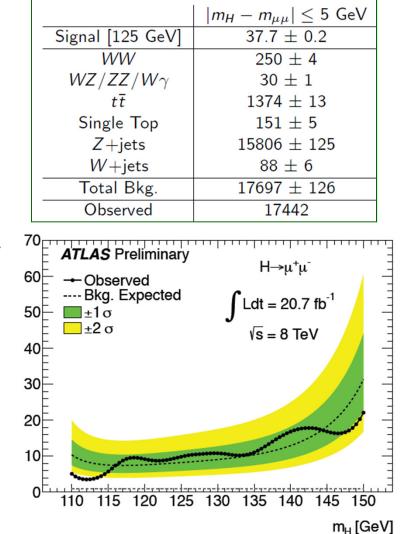


$H \rightarrow \tau \tau$, bb, μμ

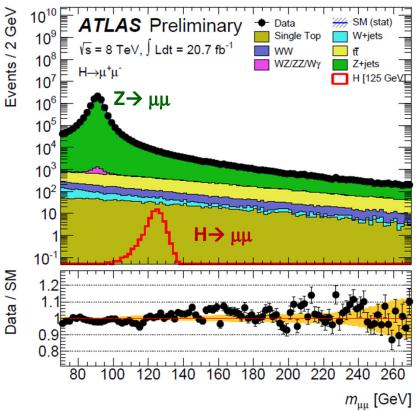


$Z/W+H \rightarrow bb$

ATLAS-CONF-2013-079 Also 7 TeV analysis of tt+H, with $H \rightarrow bb$ [ATLAS-CONF-2012-135]



Signal Strength of $H \rightarrow bb$



$H \rightarrow \mu \mu$

ATLAS-CONF-2013-010

 $B(H[125]
ightarrow \mu\mu) = 2.2 imes 10^{-4}$

Search window: 110-150 GeV MC background predictions are not used in the search (for optimization only)

Properties Measurements: Signal Strength, Mass, Couplings, Spin-Parity

arXiv:1307.1427

Higgs Signal Strength

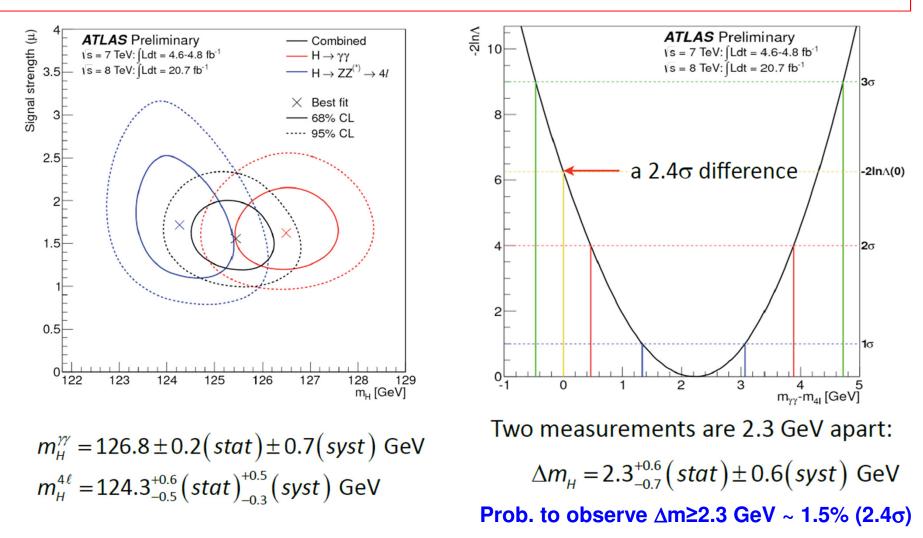
Signal strength $\mu = \sigma / \sigma_{SM}$

Combination of diboson final states $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ(^*) \rightarrow 4/$ $H \rightarrow WW(^*) \rightarrow l v l v$ measured at combined m_{μ} =125.5 GeV

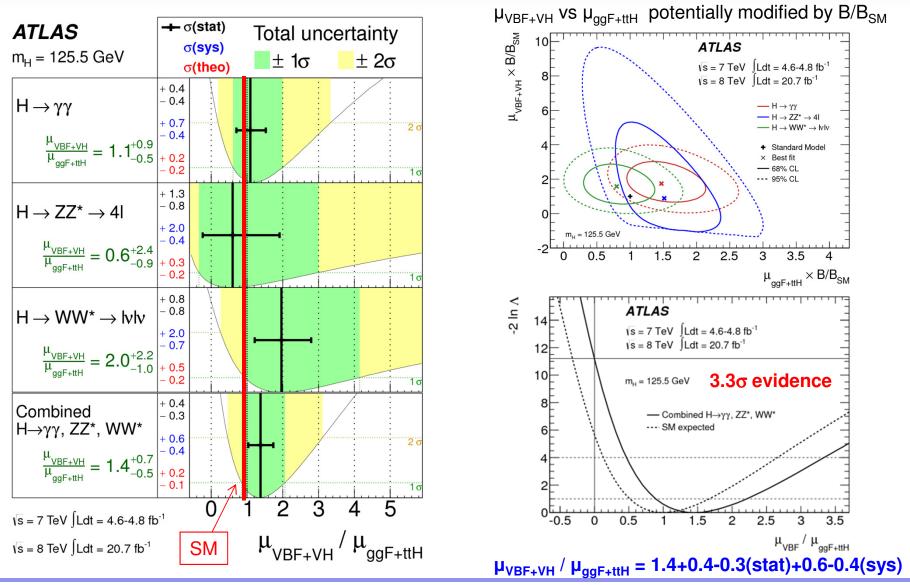
- Variation due to m_H uncertainty: $\pm 3\%$
- Compatibility with SM (μ =1): 7%
- Largest deviation μ_{vv} : 1.9 σ

Including preliminary μ_{bb} , $\mu_{\tau\tau}$: μ =1.23 ± 0.18

ATLAS also sets preliminary (95%CL) limits:


 $H \rightarrow \mu\mu$: $\mu < 9.8$ (20.7 fb⁻¹)

 $H \rightarrow Zy: \mu < 18.2 (4.6 \text{ fb}^{-1} + 20.7 \text{ fb}^{-1})$

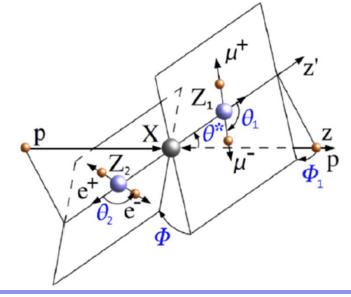

+ σ(stat) ATLAS Total uncertainty **σ(sys)** $m_{\rm H} = 125.5 \, {\rm GeV}$ ± 1σ on μ σ(theo) ±0.23 $\mathbf{H} \rightarrow \gamma \gamma$ $\mu = 1.55_{-0.28}^{+0.33} \begin{vmatrix} \pm 0.15 \\ \pm 0.15 \end{vmatrix}$ $\mu = 1.6^{+0.5}_{-0.4}$ Low p_{T+} ±0.3 $\mu = 1.7^{+0.7}_{_{-0.6}}$ High p₋, ±0.5 2 jet high $\mu = 1.9^{+0.8}_{-0.6}$ ±0.6 mass (VBF) VH categories $\mu = 1.3^{+1.2}_{-1.1}$ ±0.9 ±0.33 $H \rightarrow ZZ^* \rightarrow 4I$ $\mu = 1.43^{+0.40}_{-0.35} \begin{vmatrix} \pm 0.17 \\ \pm 0.14 \end{vmatrix}$ VBF+VH-like $\mu = 1.2^{^{+1.6}}_{_{-0.9}}$ + 1.6 categories - 0.9 Other $\mu = 1.45_{-0.36}^{+0.43}$ ±0.35 categories ±0.21 $H \rightarrow WW^* \rightarrow h \nu h \nu$ ±0.21 $\mu = 0.99_{-0.28}^{+0.31}$ ±0.12 $\mu=0.82_{_{-0.32}}^{^{+0.33}}$ 0+1 jet ±0.22 $\mu = 1.4_{_{-0.6}}^{^{+0.7}}$ 2 jet VBF ±0.5 Comb. $H \rightarrow \gamma \gamma$, ZZ*, WW* ± 0.14 $\mu = 1.33^{+0.21}$ ±0.15 -0.18 ±0.11 2 3 0 √s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹ $\mu = 1.33 \pm 0.14$ (stat) ± 0.15 (sys) ± 0.11 (theo) Signal strength (μ) √s = 8 TeV ∫Ldt = 20.7 fb⁻¹ SM

Mass Combination (4I, $\gamma\gamma$)

Combined mass measurement m_H = 125.5 ± 0.2 (stat) ± 0.6 (syst) GeV

VBF vs. ggF Production

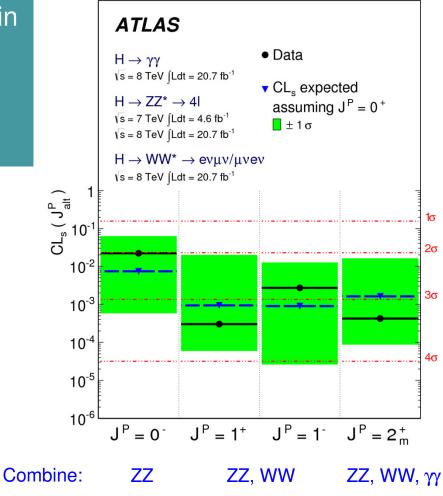
Studies on Spin-Parity


Spin 1 hypothesis strongly disfavored by Landau-Yang theorem, main interest is to test the SM 0⁺ hypothesis against 2⁺: start with spin 2 tensor with minimal couplings to SM particles (2⁺_m)

Spin 2⁺_m discrimination is tested for possible mixtures of gluon and quark initiated production

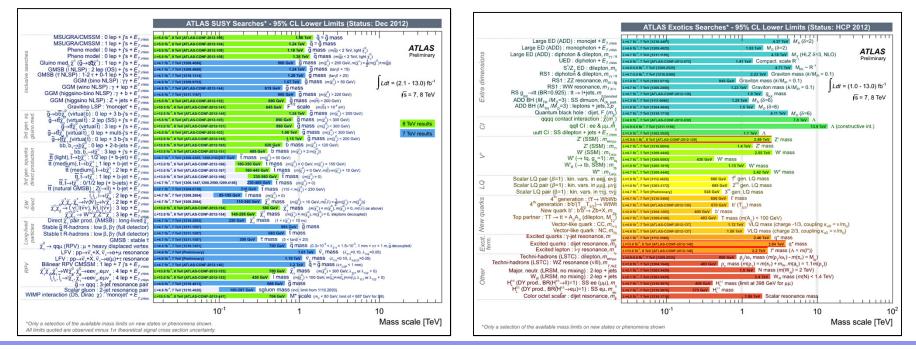
 $H \rightarrow ZZ^* \rightarrow 4I$ analysis is also testing other spin parity states, as 0+ vs 0- etc. with gluon-fusion production

Spin studies in three different decay modes

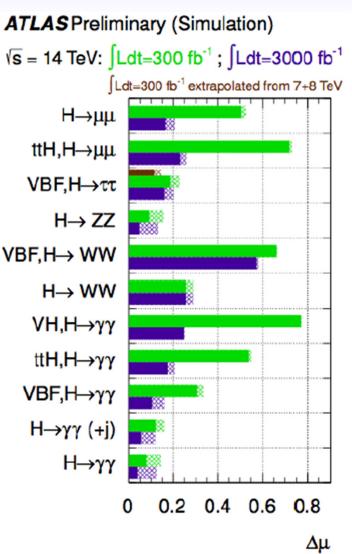

- -H $\rightarrow \gamma \gamma$: fully reconstructed, however only production angle θ^* available
- -H→ZZ*: fully reconstructed, decay of Z bosons provides full information on the Z decay planes 5 decay angles as shown, and m_{Z1}, and m_{Z2}
- H→WW*: direct calculation of decay angles not possible, use other kinematic distributions

Combined Spin-Parity Results

▷ 0⁻ hypothesis excluded at 97.8% CL in favor of 0⁺ by H→ ZZ*→ 4I analysis
 ▷ 1⁺ and 1⁻ excluded at 99.7% CL, respectively by WW and ZZ analysis
 ▷ 2⁺ excluded at 95.2% to 99.96% CL

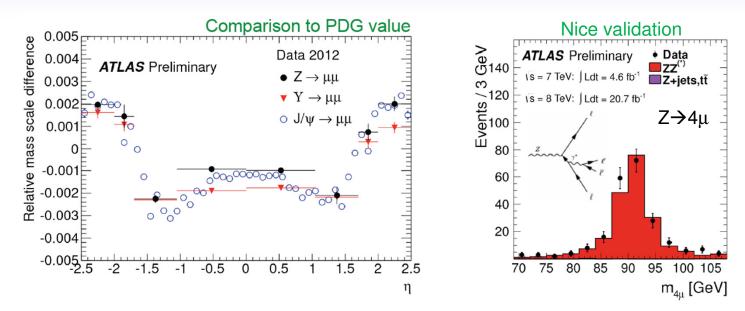


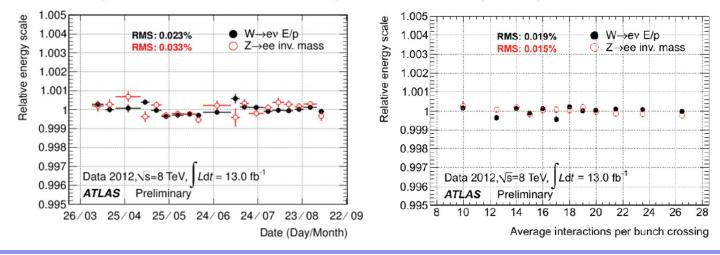
Data favours $J^p = 0^+ \rightarrow SM$ -like Higgs!


What Has Been Learned From LHC Run I

- Standard Model gauge sector re-established at the LHC
- Discovered a SM-like Higgs Boson with mass ~ 125 GeV, which couples to Bosons and Fermions – a breakthrough in Standard Model electroweak sector
- * No other new physics has been observed in data

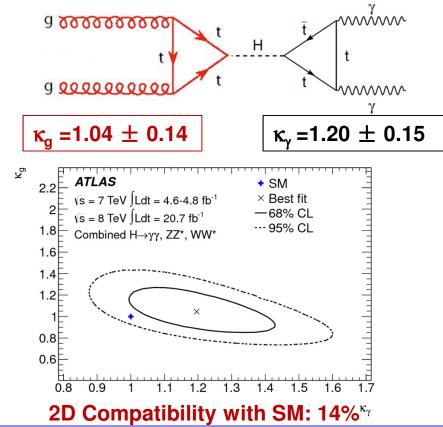
Exciting Physics in Run II, III

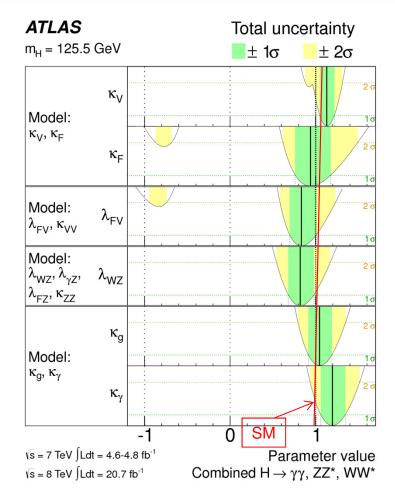

- LHC Run II, II: 14 TeV; 300 fb⁻¹, 3000 fb⁻¹
- Precision Higgs physics
 - Establish fermion decay signals
 - Precision coupling measurements
 - Observe rare decay modes, including Higgs self interactions
- Study of vector boson scattering key processes to connect EWSB
- Continue to search for BSM Higgs if there are more scalar particles?
- Dark Matter signature?
- **Supersymmetry** (still highly motivated)
 - Weakly produced new physics
 - Significantly increase chargino-neutralino mass sensitivity from ~350 GeV to ~ 1TeV
- Explore unknown at 14 TeV!


u

Spare slides

Lepton Energy/Momentum Calibration


Stability of EM calorimeter response vs time/pile-up better than 0.1%



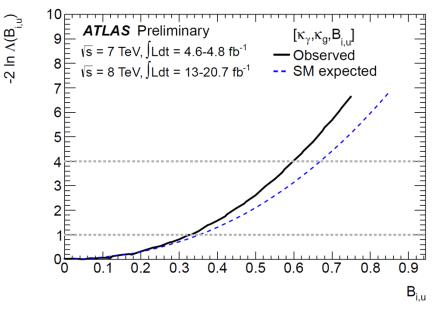
Constraints on BSM Loops

New heavy particles may contribute to loops

- Introduce effective κ_g, κ_γ to allow heavy BSM particles contribute to the loops
- Tree-level couplings: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ etc set to 1
 - Absorb all difference into loop couplings
 - Indirectly fixed normalization of Higgs width

Couplings tested for anomalies w.r.t. fermion and boson, W/Z and vertex loop contributions at \pm 10-15% precision

Limit on Invisible Decay BR_{inv}

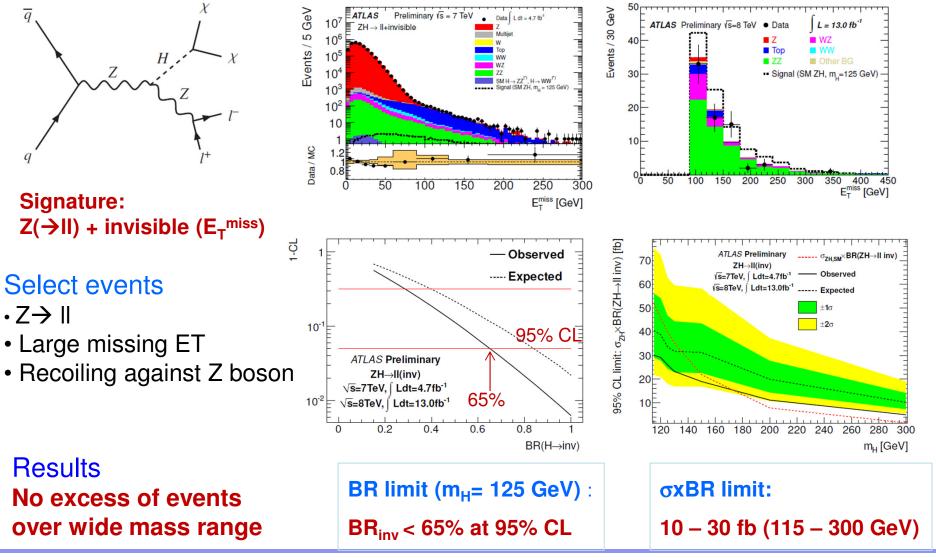

- Consider effective loop couplings: κ_γ, κ_g
- * Fix the SM Higgs couplings for κ_V and κ_f
- $\label{eq:relation} \bigstar \ \mbox{Define the invisible branching ratio BR_{inv}} \\ \Gamma_{\rm H} = \ \Gamma_{\rm SM} + \Gamma_{\rm inv} \qquad $BR_{\rm inv} = \Gamma_{\rm inv}/\Gamma_{\rm H}$ \\ \end{cases}$

Parameterization on modified Higgs width:

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - BR_{\rm inv.,undet.})} \Gamma_{\rm H}^{\rm SM}$$

Three fitted parameters: $\kappa_{\gamma}, \kappa_{\alpha} + BR_{inv}$

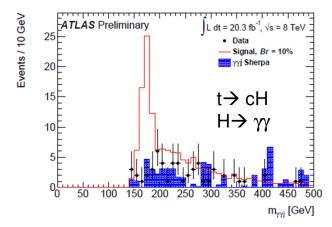
ATLAS-CONF-2013-34



BR_{inv} < 58% at 95% C.L.

$$\begin{array}{rcl} \kappa_g &=& 1.08^{+0.32}_{-0.14} \\ \kappa_\gamma &=& 1.24^{+0.16}_{-0.14} \end{array}$$

Direct Search For Invisible Higgs


ATLAS-CONF-2013-011

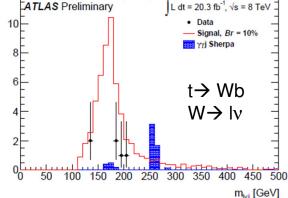
Search for $t \rightarrow cH$

ATLAS-CONF-2013-081

Benchmark model:tt \rightarrow (Wb) + (cH)

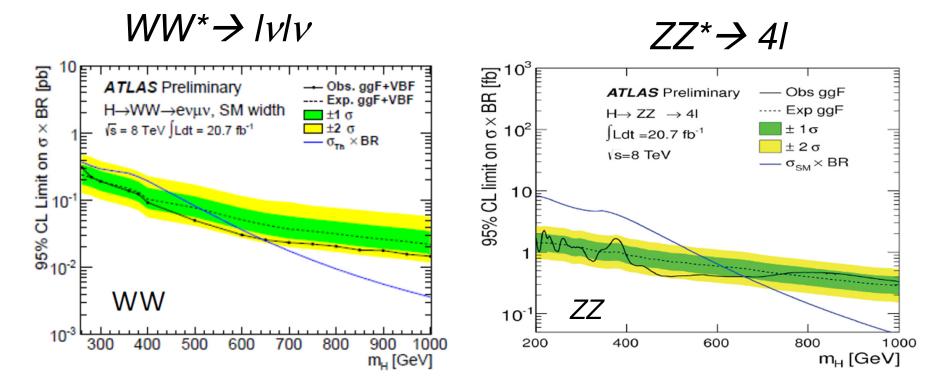
IVIODEIS									
Process	SM	QS	2HDM-III	FC-2HDM	MSSM				
$t \rightarrow c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 \cdot 10^{-6}$				
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1\cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$				
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}				

 $\Gamma_{t \to cH} = \frac{\alpha}{32s_W^2} g_{tcH}^2 m_t (1 - \frac{m_H^2}{m_t^2})^2$ $\Gamma_{t \to bW} = \frac{\alpha}{16s_W^2} |V_{tb}|^2 \frac{m_t^3}{m_W^2} (1 - 3x^4 + 2x^6)$ $x = m_W/m_t$

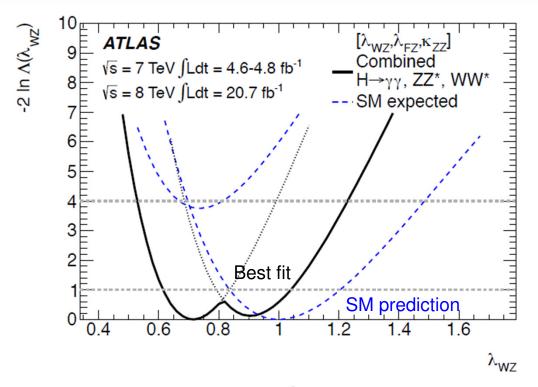

Expected event yield for $BR(t \rightarrow cH) = 1\%$

Channel	Hadronic 7 TeV	Hadronic 8 TeV	Leptonic 8 TeV
tt cross section (pb)	172^{+7}_{-8}	+9 -11	
$H \rightarrow \gamma \gamma$ branching ratio (‰)		2.28 ± 0.12	
Signal efficiency (%)	4.34	4.13	1.29
Stat. uncertainty (%)	0.12	0.14	0.06
Expected events for 1% tcH Br	1.58	9.30	2.91
Uncertainty (not incl. exp. syst.)	±0.12	(+0.65, -0.72)	(+0.24,-0.27)

ATLAS FCNC limit: $t \rightarrow cH(\gamma\gamma)$: **BR(t\rightarrowcH) < 0.8% @ 95% CL (exp. 0.5%)**


Events / 10 GeV

Search for High Mass $H \rightarrow ZZ$, WW


ATLAS-CONF-2013-067

Extend the Higgs search to high mass assume SM-like width, and decay to

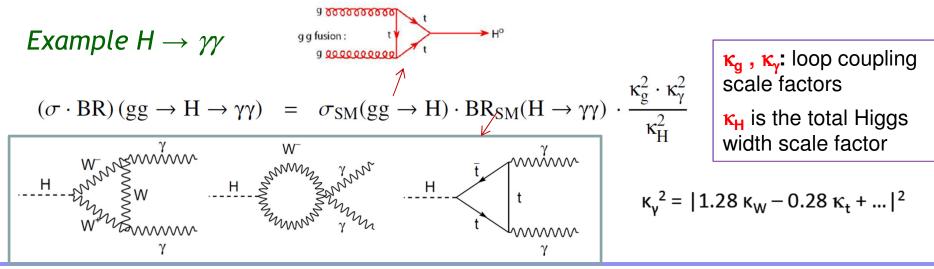
95% C.L. exclusion of a SM-like heavy Higgs up to ~ 650 GeV

W vs Z Coupling (custodial symmetry)

 λ_{WZ} consistent with SM

$$\lambda_{WZ} = 0.82 \pm 0.15$$

Indirect indication "Higgs-like" boson is EW doublet (since $\lambda_{WZ} = 0.5$ for triplet)


Ratio of W/Z couplings (λ_{WZ}), with:

- Fermion couplings grouped together
- Total width left free
- Extra degree to allow to absorb deviation from the SM in the $H\to\gamma\gamma$ loop

Coupling Measurements

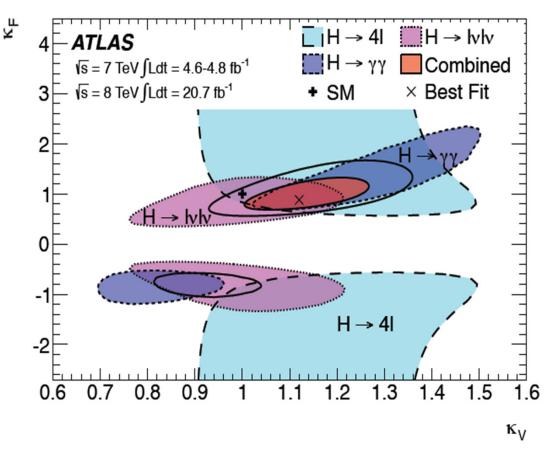
Coupling strengths $\kappa_i \& ratio: \kappa_F = g_F/g_{F,SM}, \kappa_V = g_V/g_{V,SM}, \lambda_{ij} = \kappa_i / \kappa_j$

Model	Probed	Parameters of	Functional assumptions			umpti	ions	Example: $gg \rightarrow H \rightarrow \gamma\gamma$
	couplings	interest	κ _V	KF	Kg	Κγ	К _Н	
1	Couplings to	κ_V, κ_F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$	\checkmark	\checkmark	\checkmark	\checkmark	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-	\checkmark	\checkmark	\checkmark	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$
4	Custodiai symmetry	$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \lambda_{\gamma Z}^2$
5	Vertex loops	<i>К</i> g, <i>К</i> γ	=1	=1	-	-	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g, \kappa_\gamma)$

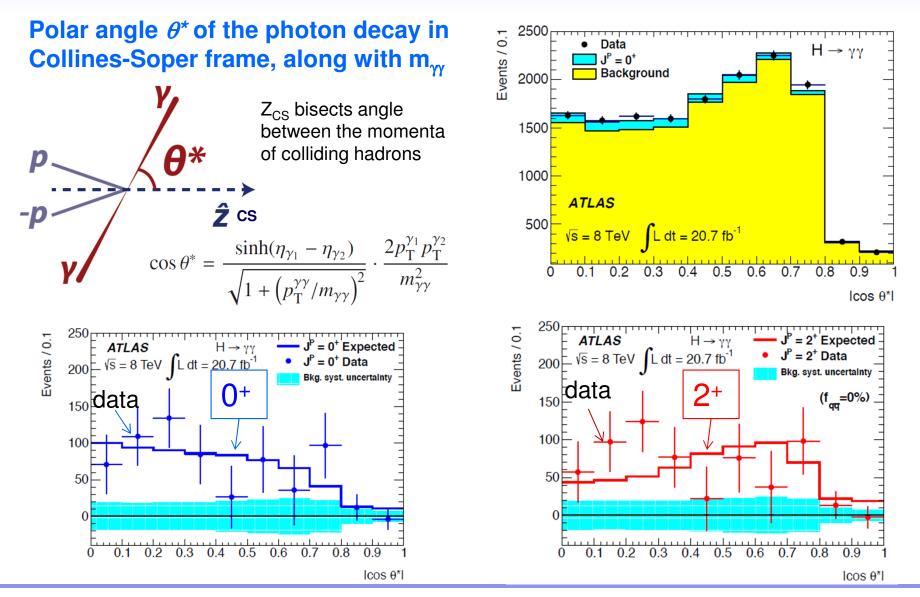
Vector vs Fermion Couplings

2-parameter benchmark model:

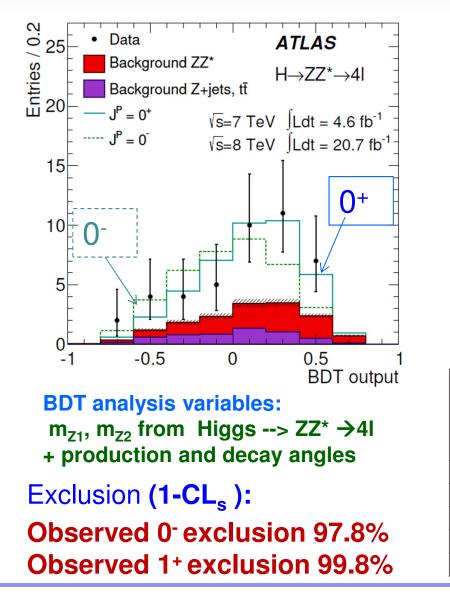
 $\kappa_V = \kappa_W = \kappa_Z (>0)$

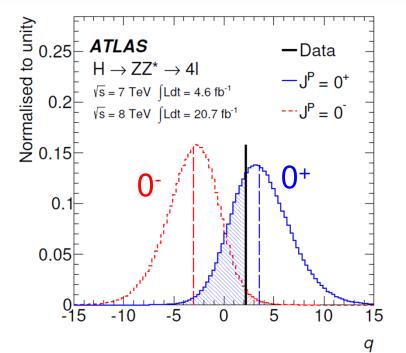

diagrams)

 $\kappa_F = \kappa_t = \kappa_b = \kappa_c = \kappa_{\tau} = \kappa_g$ (Gluon coupling are related to top, b, and their interference in tree level loop


Assume no BSM contributions to loops: $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$, and no BSM decays (no invisible decays)

 $\succ \kappa_{\rm F}$ = 0 is excluded (>5 σ)


Double minimum from interference between vector(W) and fermion(top) in $H \rightarrow \gamma \gamma$



Spin Analysis with H $\rightarrow \gamma \gamma$

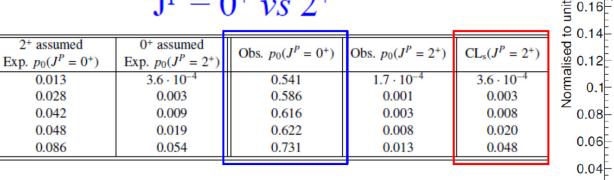

Spin Analysis with $H \rightarrow ZZ^* \rightarrow 4I$

		BDT analysis				
		tested	J^P for	tested 0 ⁺ for		
		an assu	med 0 ⁺	an assumed J^P	CLS	
		expected observed		observed*		
0-	p_0	0.0037	0.015	0.31	0.022	
1+	p_0	0.0016	0.001	0.55	0.002	
1-	p_0	0.0038	0.051	0.15	0.060	
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168	
2-	p_0	0.0053	0.25	0.034	0.258	

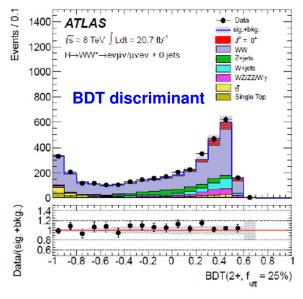
Spin Analysis With $H \rightarrow WW^*$

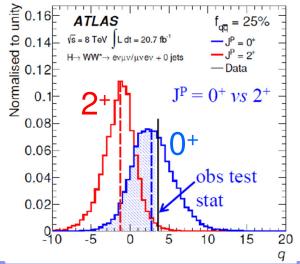
$J^{P} = 0^{+} vs 2^{+}$

fqq


100%

75%


50%


25%

0%

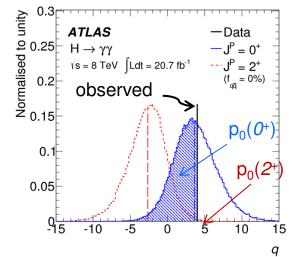
Observed 2+ (gg=100%) exclusion 99.96% Exclusion (1-CL_s): Observed 2⁺ (qq = 0%) exclusion 95.2%

2⁺ Hypothesis Exclusion

Method

- Binned likelihood using discriminants
 e.g. m_w and |cos θ*|
- Poisson probability given a signal *S* scaled by strength μ and background *B* with nuisance parameters θ and constraints from auxiliary
- measurements A for each channel
 Ratio of likelihoods test statistic

 $\overline{q} = \log(\mathscr{L}(0^+)/\mathscr{L}(J^P_{alt}))$


with μ fixed for a given J^{P}

- Exclusion using (1 - CL_S)

 $CL_{S} = p_{0} (J^{P}_{alt}) / (1-p_{0}(0^{+}))$

$$\mathcal{L}(J^{P}, \mu, \theta) = \prod_{j}^{N_{\text{chann.}}} \prod_{i}^{N_{\text{bins}}}$$
$$P(N_{i,j} \mid \mu_{j} \cdot S_{i,j}^{(J^{P})}(\theta) + B_{i,j}(\theta)) \times \mathcal{A}_{j}(\theta)$$

Observed 2⁺ exclusion 99.3% (1-CL_s)

$f_{q\bar{q}}$	$2^+ \text{ assumed} \\ \text{Exp. } p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{P} = 2^{+})$
100%	0.148	0.135	0.798	0.025	0.124
75%	0.319	0.305	0.902	0.033	0.337
50%	0.198	0.187	0.708	0.076	0.260
25%	0.052	0.039	0.609	0.021	0.054
0%	0.012	0.005	0.588	0.003	0.007