

Triggering Discoveries in High-Energy Physics

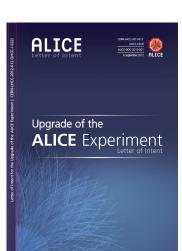
The Upgrade of the ALICE Online and Offline Computing after 2018

Thorsten Kollegger for the ALICE Collaboration

ALICE | ICTDHEP | 12.09.2013

ALICE Upgrade Overview

Planned for 2018 (LHC 2nd Long Shutdown)

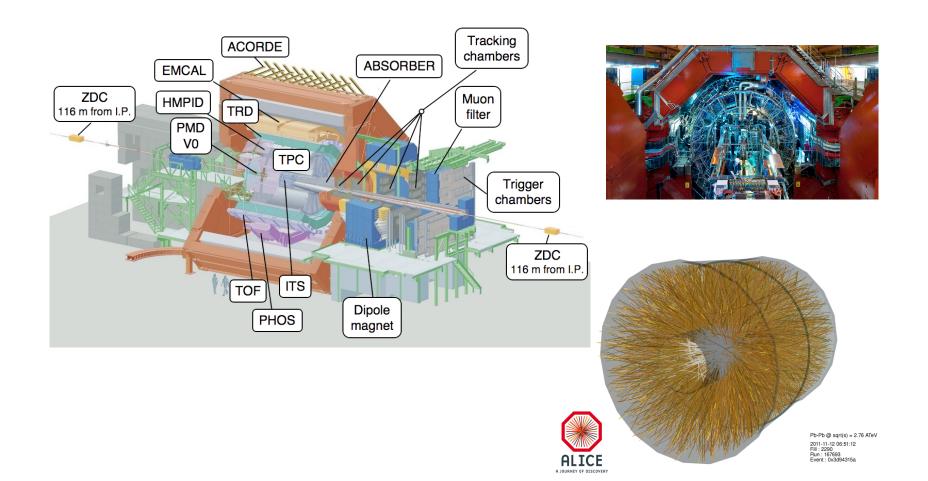

("Upgrade of the ALICE Experiment", LoI, CERN-LHCC-2012-12)

Physics goals (Michael Webers Talk on Tuesday)

Heavy Flavor Quarkonia Low-mass dielectrons Jets Anti- and Hypernuclei

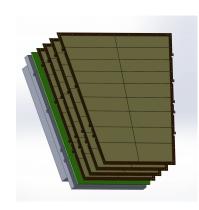
Target

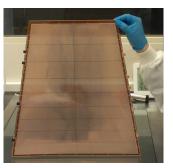
- Pb-Pb recorded luminosity $\geq 10 \text{ nb}^{-1} \Rightarrow 8 \times 10^{10} \text{ events}$
- pp (@5.5 Tev) recorded luminosity $\geq 6 \text{ pb}^{-1} \Rightarrow 1.4 \times 10^{11} \text{ events}$

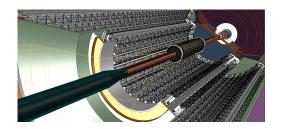


2

A Large Ion Collider Experiment






ALICE Upgrade Overview

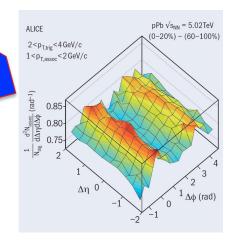
The upgrade plan entails building

- New, high-resolution, low-material ITS
- Upgrade of TPC with replacement of MWPCs with GEMs and new pipelined readout electronics
- Upgrade of readout electronics of: TRD, TOF, PHOS

ALICE Upgrade Overview

The upgrade plan entails building

- Upgrade of readout electronics of the Muon Spectrometer
- Upgrade of the forward trigger detectors and ZDC
- Muon Forward Tracker (MFT)
- Upgrade of the online systems
- Upgrade of the offline reconstruction
 and analysis framework and code



O² Project

From Detector Readout to Analysis: What is the "optimal" computing architecture?

Requirements

Sample full 50kHz Pb-Pb interaction rate (current limit at ~500Hz, factor 100 increase)

Typical event size of PbPb collisions@5.5TeV: 22 MByte ⇒ ~1.1 TByte/s detector readout

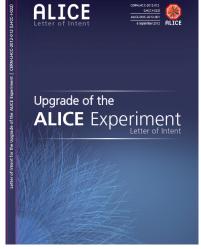
⇒ ~500 PByte/HI period (1 month)

However:

storage bandwidth limited to ~20 GByte/s

How to reduce the data rate? Trigger?!?

ALICE Upgrade


Physics goals (Michael Webers Talk on Tuesday)

Heavy Flavor Quarkonia Low-mass dielectrons Jets Anti- and Hypernuclei

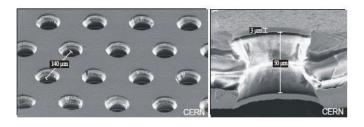
⇔ classical trigger/event filter approach not efficient

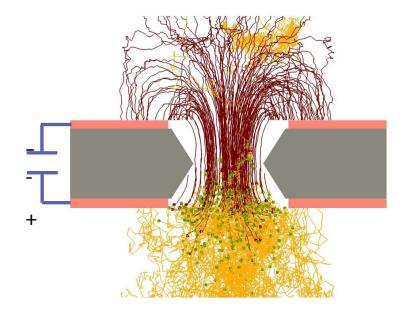

Why not triggering?

Particle	Eff	S/ev	S/B	B'/ev	trigger	S/nb^{-1}
					rate (Hz)	
D^0	0.02	$1.6 \cdot 10^{-3}$	0.03	0.21	$11 \cdot 10^{3}$	$1.3 \cdot 10^7$
D_s^+	0.01	$4.6 \cdot 10^{-4}$	0.01	0.18	$9 \cdot 10^{3}$	$3.7 \cdot 10^{6}$
$\Lambda_{ m c}$	0.01	$1.4 \cdot 10^{-4}$	$5 \cdot 10^{-5}$	11	$5 \cdot 10^{4}$	$1.1 \cdot 10^{6}$
$\Lambda_{\rm c} (p_{\rm t} > 2 {\rm GeV}/c)$	0.01	$0.8 \cdot 10^{-4}$	0.001	0.33	$1.6 \cdot 10^4$	$0.6 \cdot 10^{6}$
$B \rightarrow D^0 (\rightarrow K^- \pi^+)$	0.02	$0.8 \cdot 10^{-4}$	0.03	$11 \cdot 10^{-3}$	$5 \cdot 10^2$	$0.6 \cdot 10^{6}$
$B \rightarrow J/\psi(\rightarrow e^+e^-)$	0.1	$1.3 \cdot 10^{-5}$	0.01	$5 \cdot 10^{-3}$	$3 \cdot 10^{2}$	$1 \cdot 10^{5}$
${ m B}^+ ightarrow { m J}/\psi { m K}^+$	0.01	$0.5 \cdot 10^{-7}$	0.01	$2 \cdot 10^{-5}$	1	$4 \cdot 10^{2}$
${ m B}^+ ightarrow { m \overline{D}}^0 \pi^+$	0.01	$1.9 \cdot 10^{-7}$	0.01	$8 \cdot 10^{-5}$	4	$1.5 \cdot 10^3$
${ m B}^0_{ m s} ightarrow { m J}/\psi \phi$	0.01	$1.1 \cdot 10^{-8}$	0.01	$4.4 \cdot 10^{-6}$	$2 \cdot 10^{-1}$	9 · 10 ¹
$\Lambda_{\rm b}(\rightarrow \Lambda_{\rm c} + e^-)$	0.01	$0.7 \cdot 10^{-6}$	0.01	$2.8 \cdot 10^{-4}$	14	$5 \cdot 10^{3}$
$\Lambda_b(\rightarrow \Lambda_c + h^-)$	0.01	$0.7 \cdot 10^{-5}$	0.01	$2.8 \cdot 10^{-3}$	$1.4 \cdot 10^{2}$	$5 \cdot 10^{4}$

Triggering on D⁰, D_s and Λ_c (p_T>2 Gev/c) $\Rightarrow \sim 20-25$ kHz@50kHz rate...

ALICE TPC Upgrade




Ions from the amplification region require finite drift time to reach the gating grid With current ALICE TPC gas: ~100 μs drift + 180 ~μs gating grid closing time **Rate limited to ~3.5 kHz**

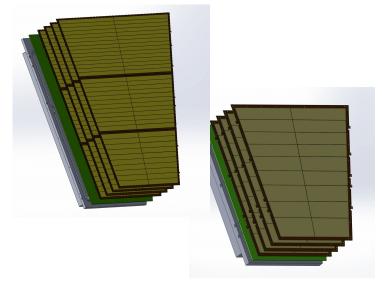
Without gating grid: space-charge distortions O(1m) to be compared with required position resolution $O(100\mu m)$

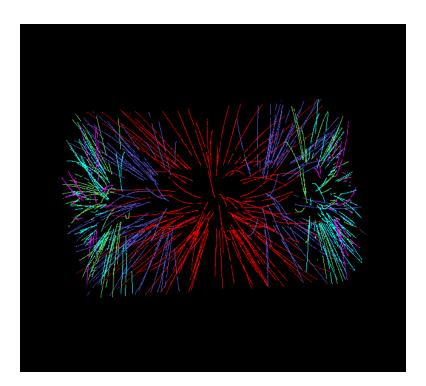
ALICE TPC Upgrade

GEM: Gas Electron Multiplier

copper – kapton – copper sandwich (~50µm) with holes etched into it

large field strength inside holes, sufficient for avalanche creation (gas amplification)


fast negative signal (new electronics)


asymmetric field configuration features intrinsic ion blocking

ALICE TPC Upgrade

New read-out chambers based on 4 GEM layer setup

Operated in continuous mode: self triggered electronic At 50kHz: on average 5 events in TPC drift time of ~100 µs -> Factor 5 in data volume for online systems to read-out and process

Requirements

Sample full 50kHz Pb-Pb interaction rate (current limit at ~500Hz, factor 100 increase)

Typical event size of PbPb collisions@5.5TeV: 22 MByte

- ⇒ ~1.1 TByte/s detector readout
- ⇒ ~500 PByte/HI period (1 month)

However:

- storage bandwidth limited to ~20 GByte/s
- many physics probes have low S/B and event overlap in TPC: classical trigger/event filter approach not efficient

... and all this data has to be reconstructed

Strategy

Data reduction by online reconstruction

Store only reconstruction results, discard raw data

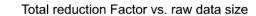
- Demonstrated with TPC data since Pb-Pb 2011
- Optimized data structures for lossless compression
- Algorithms designed to allow for "offline" reconstruction passes with improved calibrations
- Implies much tighter coupling between online and offline computing systems

TPC Data Reduction

Data Format		Data Reduction Factor	Event Size (MByte)
	Raw Data	1	700
FEE	Zero Suppression	35	20
HLT	Clustering & Compression	5-7	~3
	Remove clusters not associated to relevant tracks	2	1.5
	Data format optimization	2-3	<1

First steps up to clustering on the FPGA of the detector link receiver Further steps require full event reconstruction, pattern recognition requires only coarse online calibration

TPC Data Reduction

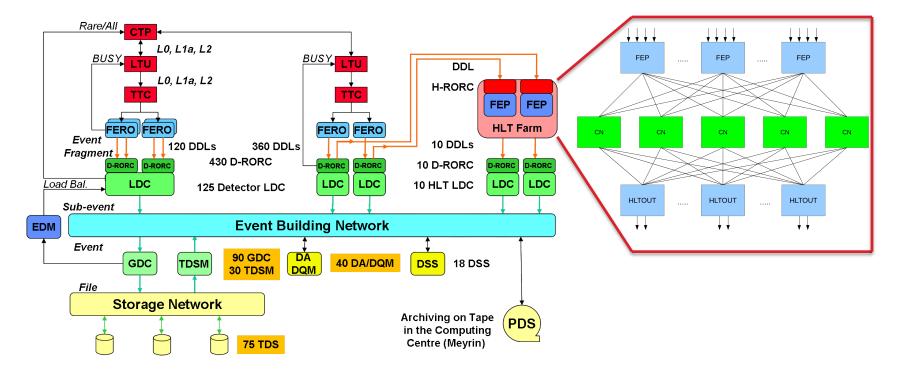


First compression steps used in production starting with the 2011 Pb+Pb run

Online found TPC clusters are basis for offline reconstruction

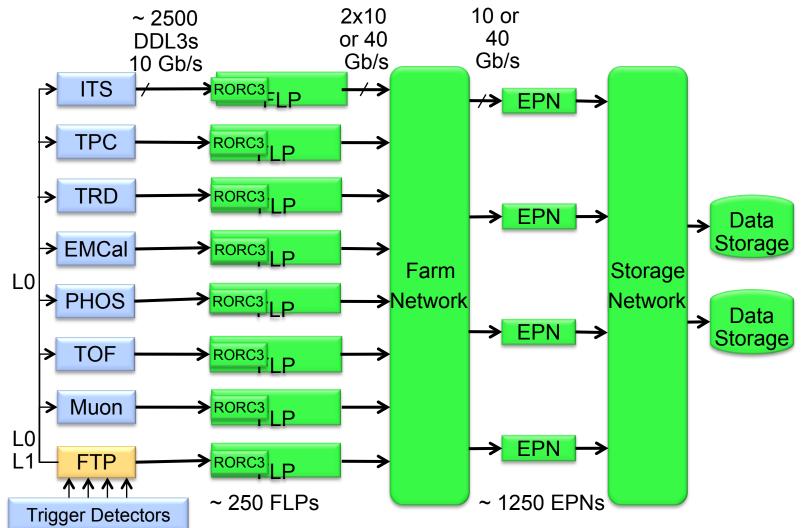
Currently R&D towards using online found TPC tracks to complement offline seed finding and online calibration

HLT Pb+Pb 2011 HLT Pb+Pb 2011

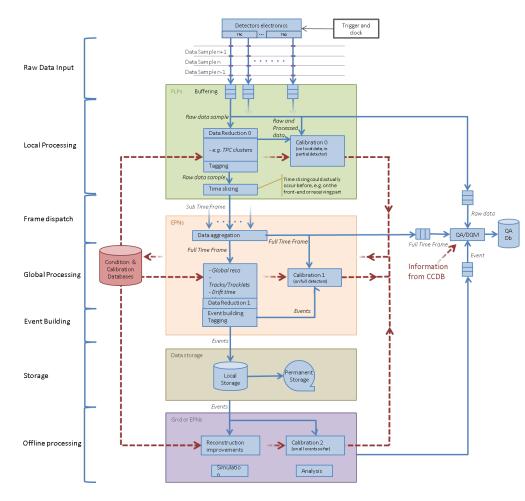

Data Bandwidth

Detector	Input to Online System (GByte/s)	Peak Output to Local Data Storage (GByte/s)	Avg. Output to Computing Center (GByte/s)
TPC	1000	50.0	8.0
TRD	81.5	10.0	1.6
ITS	40	10.0	1.6
Others	25	12.5	2.0
Total	1146.5	82.5	13.2

LHC luminosity variation during fill and efficiency taken into account for average output to computing center.

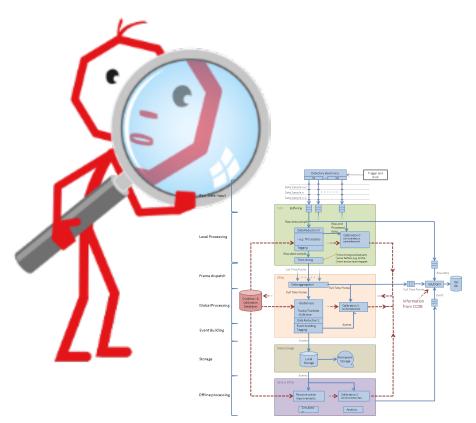

Current Online Systems

Different technologies/techniques used in DAQ/HLT e.g. Ethernet <-> Infiniband

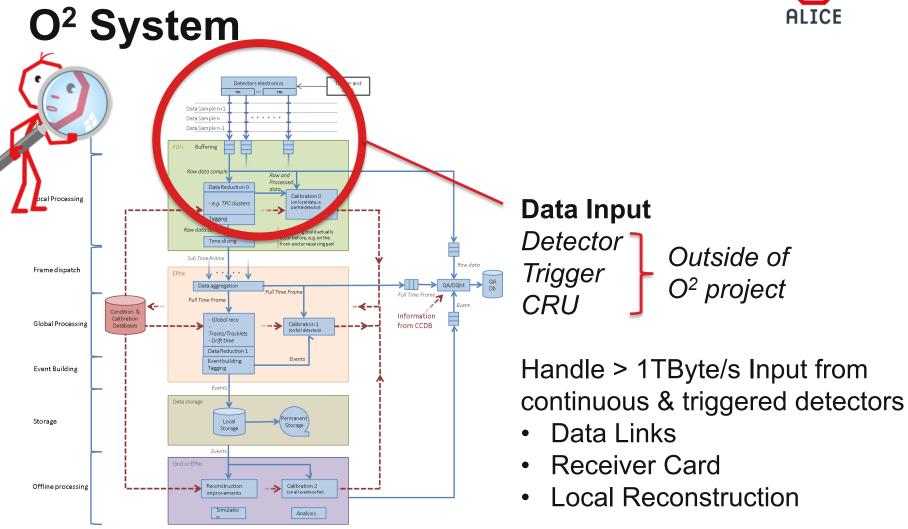


Combined DAQ/HLT System

O² System Dataflow


Main functionality blocks

- Data input
- Data reduction
- Storage
- Reconstruction
 - Simulation
 - Analysis
 - Networking Data transport
- Calibration
- Condition and calibration database
- Data monitoring (QA/DQM/etc)
- Software framework



O² System

A closer look at selected parts of the system...

Detector Readout

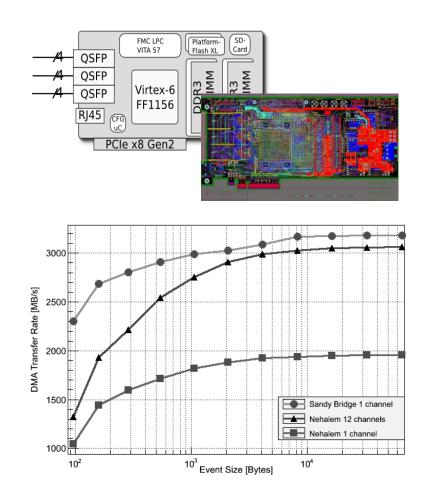
Combination of continuous and triggered readout

Continuous readout for TPC (and ITS)

- At 50 kHz, ~5 events in TPC during drift time of ~100 µs Continuous readout minimizes needed bandwidth
- Implies change from event granularity in the online systems to time-windows with multiple events
- Implies event building only after partial reconstruction

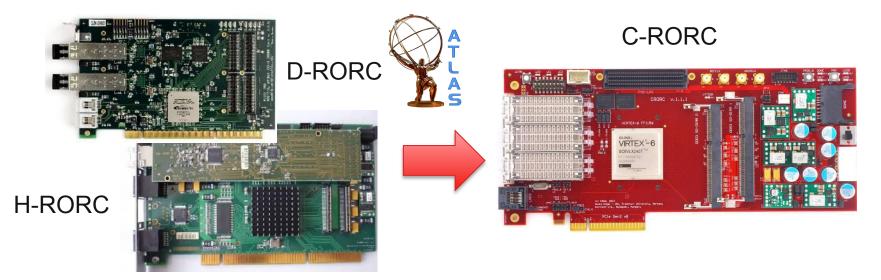
Fast Trigger Processor (FTP) complementing CTP

 Provides clock/L0/L1 to triggered detectors and TPC/ITS for data tagging and test purposes



DDL/RORC Development

Data Link DDL1 (Run 1): 2Gbit/s DDL2 (Run 2): 6 Gbit/s DDL3 (LS2): 10 Gbit/s


Receiver Card (FPGA)

- RORC1 (now)
 2 DDL1, PCI-X&PCIe Gen1x4
- RORC2 (being produced) 12 DDL2, PCIe Gen2x8
- RORC3 (LS2) 10-12 DDL3, PCIe Gen3

Read-Out Receiver Card

Common Read-Out Receiver Card

- mainly developed by IRI Frankfurt&Cerntech for HLT Run 2
- in production now, delivery this year

Increased link speed: 2 Gb/s (DDL1) -> 6 Gb/s (DDL2) Increased number of ports: 2 -> 12

Run 3 Detector Readout

Different link protocols under investigation:

- DDL3 (custom, 10Gb/s)
- Ethernet (10 40 Gb/s)
- PCIe over cable (Gen2, Gen3; 16 128 Gb/s)
- GBT (3 4 Gb/s)

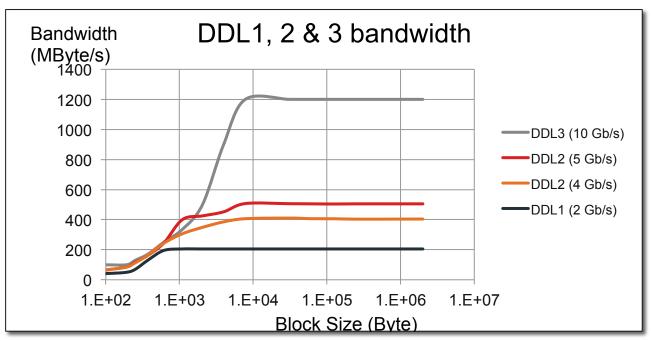
Large variation in link bandwidths

Number of links and FLPs depend upon decision about read-out implementation

Data compression by co-processing (FPGA or other)

Run 1 and 2: combined in a custom card with DDL receiver

- Run 3: could we split the dataflow and the data processing? Benchmark of memory bandwidth
- S/W compression on FLP?



DDL Performance Evolution

DDL2 at 4 and 5 Gb/s (according to needs) ready for Run 2

Prototype for one of the DDL3 option considered for Run 3 implemented (Eth. + UDP/IP)

Expected performance evolution verified

Time Frames FL (frame length) = O(100 TPC drift time) header ieader neader eader Continuous Payload Payload Payload Payload Heartbeat trigge events header header Payload Payload Triggered Time

Run 3 will work with "time frames" (continuous read-out) No "events" in the online systems; definition during reconstruction

Defined by Heat-Beat Triggers

- Highest priority trigger in ALICE
- Defines boundary between Time Frames

•

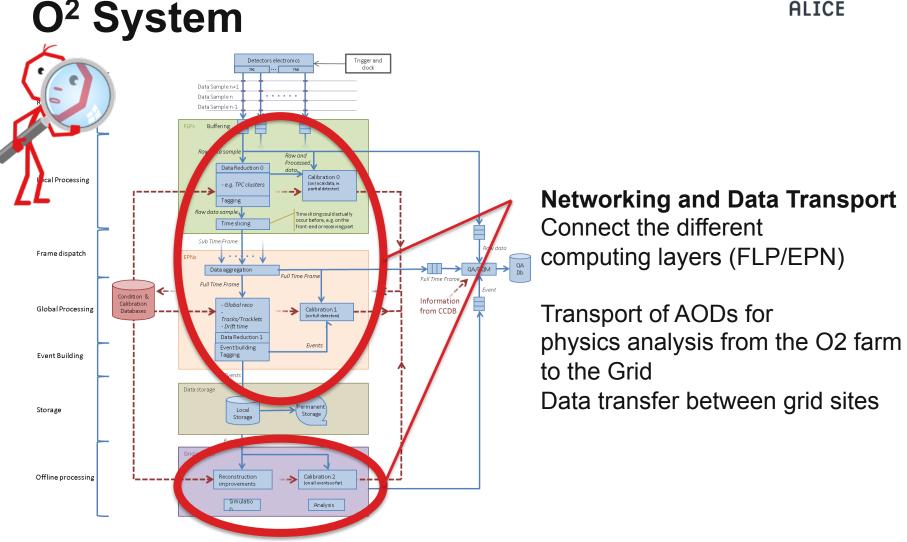
Time Frames

Length of Time Frame/HB Interval

100 µs TPC drift time determining constant

 Number events >> number events in "border" Number events >> 2*5 (@50 kHz)

Note that Time Frame Rate will be O(1kHz) – not a high rate system


Limiting factors

Data size: 1000 events@23 MByte = 23 GByte (w/o FLP comp...) Data transport: network bandwidth/FLP buffers avoid cross EPN data transfer/think in streams

ALICE

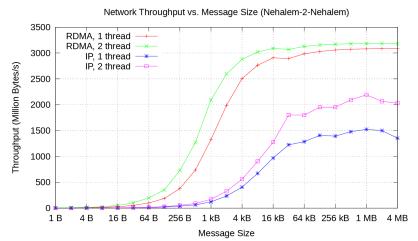
Network

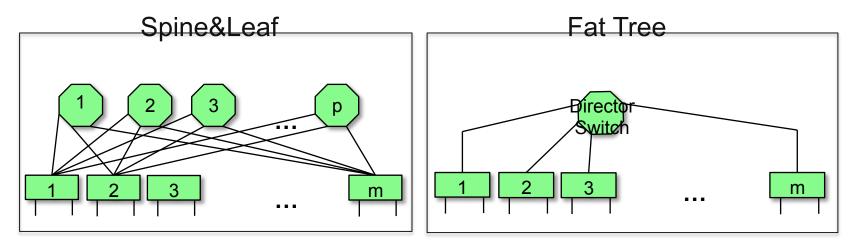
Requirements

Total number of nodes:~1500FLP Node Output:up to 12 Gbit/sEPN Node Input:up to 7.2 Gbit/sEPN Output:up to 0.5 Gbit/s

Two technologies available

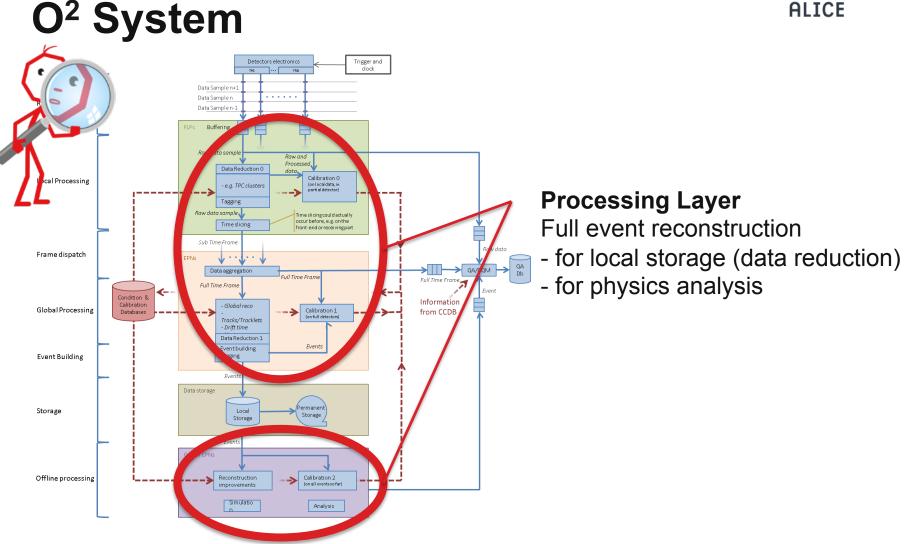
- 10/100Gbit Ethernet (currently used in DAQ)
- QDR/FDR Infiniband (40/52Gbit, used in HLT)


Both would allow to construct a network satisfying the requirements even today


Network

Throughput tests

Different topologies under study to


- minimize cost
- optimize failure tolerance
- cabling

Processing Power

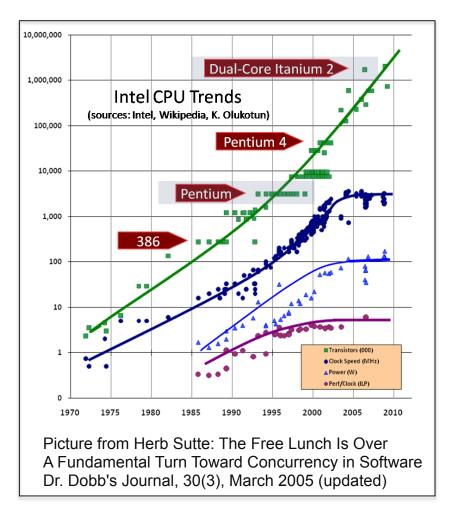
Estimate for online systems based on current HLT processing power

- ~2500 cores distributed over 200 nodes
- 108 FPGAs on H-RORCs for cluster finding 1 FPGA equivalent to ~80 CPU cores
- 64 GPGPUs for tracking (NVIDIA GTX480 + GTX580)

Scaling to 50 kHz rate to estimate requirements

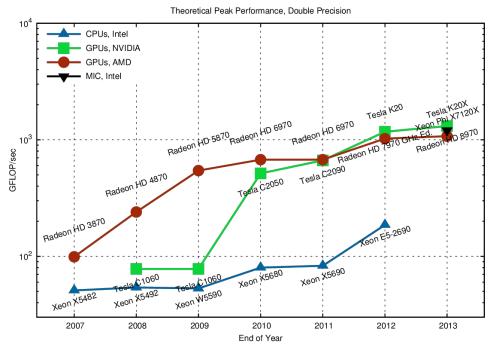
- ~ 250.000 cores
- additional processing power by FPGAs + GPGPUs

⇒1250-1500 nodes in 2018 with multicores



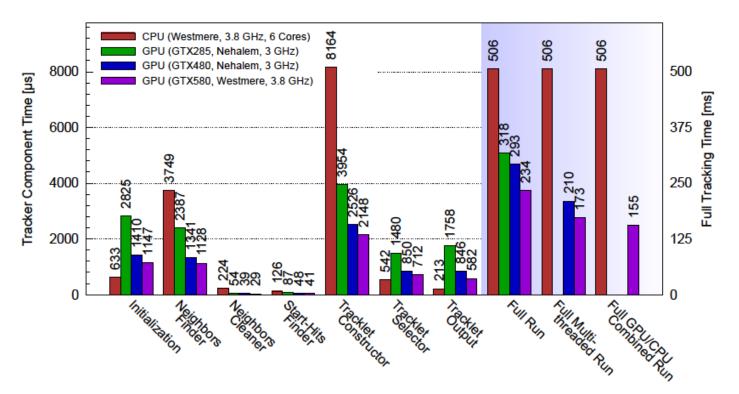
Processing Power

Estimate of processing power based on scaling by Moore's law

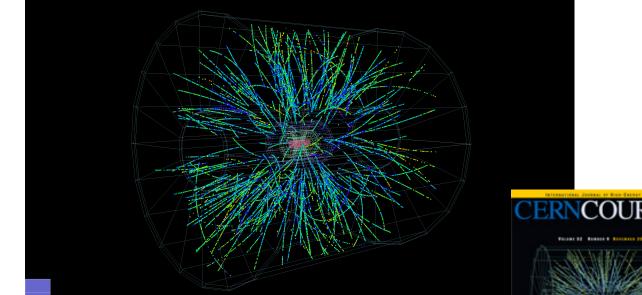

However: no increase in single core clock speed, instead multi/ many-core

Reconstruction software needs to adapt to full use resources

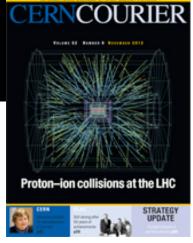
Driven by (theoretical) peak performance GPU: O(1) TFLOP/s (NVIDIA TESLA K20: 3.2 TFLOP/s) CPU: O(0.1) TFLOP/s (Intel Xeon E5-2690 : 243 GFLOP/s)



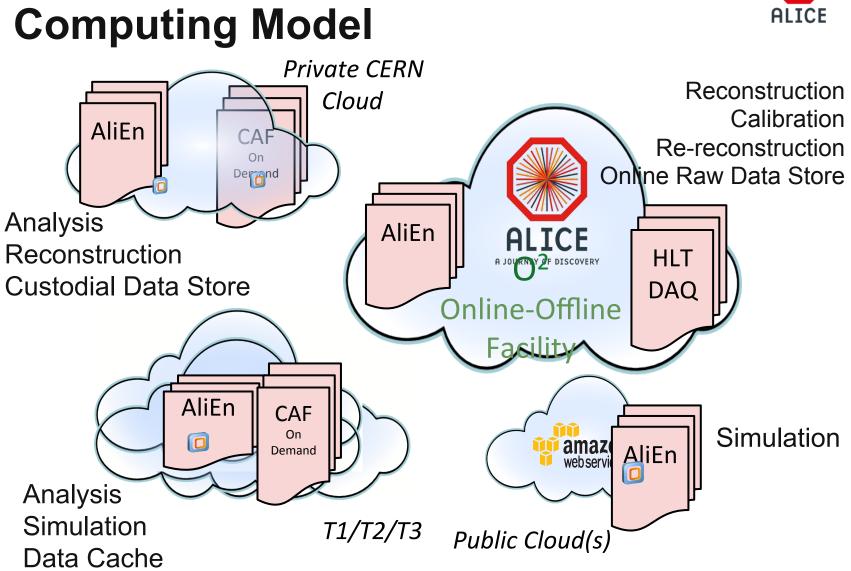
Can this theoretical peak performance be used efficiently for the typical HEP workload?


Parallel Reconstruction

Tracking most time-consuming step in ALICE Developed multi-threaded tracking algorithm for the HLT Also adopted to GPUs (NVIDIA Fermi, CUDA)



Online Reconstruction



Full GPU tracking available in the HLT since Pb+Pb 2011; based on CA algorithm

Comparable efficiency, fake and clone rates to offline code, order of magnitude faster

Summary

ALICE physics program after 2018 requires handling of 50kHz minimum-bias Pb-Pb collisions (1TByte/s) from the online and offline systems

Strategy to handle the load is an ambitious data volume reduction by a first pass online reconstruction & discarding of raw data on a combined DAQ/HLT/offline farm (O²)

Raw data will be stored locally on farm, subsequent reconstruction passes for physics will run there

R&D towards the Online&Computing TDR at end of 2014

An interesting future ahead...