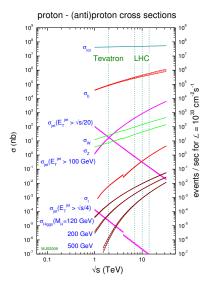
The ATLAS Trigger: Operation and Optimisation



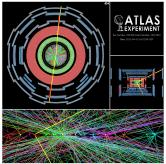
Richard Mudd

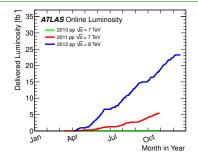
University of Birmingham

Triggering Discoveries in High Energy Physics Jammu, India Introduction

Introduction

Extensive and ambitious physics programme pursued by ATLAS

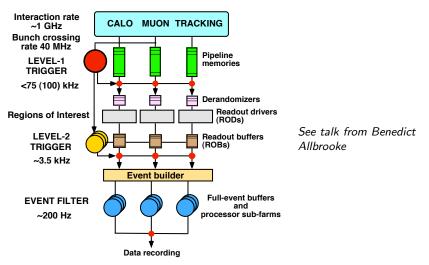

- Majority of processes of interest have cross sections many orders of magnitude below total
- Operating in a challenging environment!
- Processes of interest have a wide range of physics signatures


LHC collides protons at 20 MHz

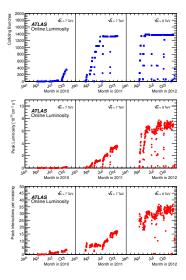
• In practice can only record around 400 Hz for physics

Introduction

- Highly successful operation of LHC during run I
- Significant ramp up in Luminosity



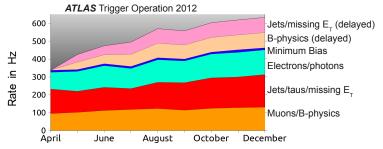
- Consequence of this is a high pileup environment
- Challenge to mantain trigger performance with a high number of collisions per event


4 of 30

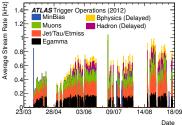
ATLAS Trigger

Trigger menu and rates

Luminosity Evolution



- Significant increase in luminosity during run l
- · Menu correspondingly evolved
- 3 p p trigger menus used for physics in 2011 and 2012
- Note that for heavy ion physics a different, specifically designed menu is used

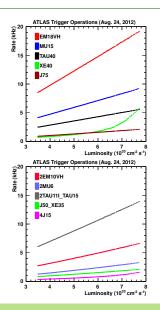

Some Nomenclature

- A trigger chain is a sequence of algorithms (L1 \rightarrow L2 \rightarrow EF) used to select a signal
- Similar trigger chains are collectively known as *trigger signature groups* • e.g. chains relating to muons referred to as muon trigger signature group
- Accepted events are recorded into different datasets *streams* • Streams are designed such that overlap is minimised
- The full collection of trigger chains is known as the trigger menu
- In 2012, ATLAS ran with a *delayed stream* where events passing certain trigger chains were stored for later reconstruction
 - $\circ~$ e.g. triggers for B-Physics

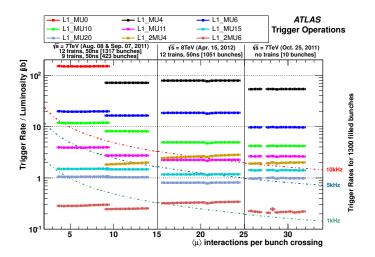
<u>Streams</u>

- Output rates predominantly from jet/ $\tau/{\rm MET}$ stream, e/ γ and muon streams
- Primary triggers enabled throughout run
- As run progresses → luminosity drops → calibration/background chains enabled

Trigger Menu

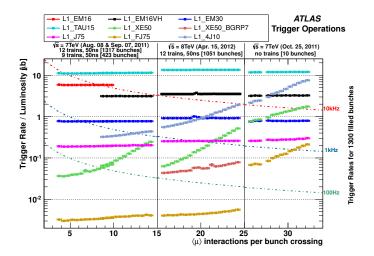

Distribution of trigger rates for $7 \times 10^{33} cm^{-2} s^{-1}$:

Signature Group	Peak L1 Rate (Hz)	Peak L2 Rate (Hz)	Average EF rate (Hz)
	14000	1200	100
e/γ	30000	2000	140
τ	24000	800	35 35
Jets	3000	1000	35
MET	4000	800	30
B-jets	5000	900	45
B-physics	7000	50	20
Total	65000	5500	400


- · Bandwidth distribution based on physics priorities
- Note that rates do not include delayed stream and totals take overlap into account

Trigger Rates at L1

- Rates of Rol based triggers in general proportional to luminosity
- Non-linear effects with pileup for global triggers
 - \circ e.g missing E_T , multi-jet triggers
 - Pileup also affects forward jet triggers



Trigger Rates at L1

12 of 30

Trigger Rates at L1

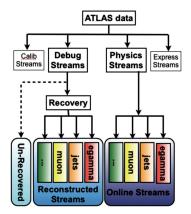
13 of 30

Trigger Monitoring

Trigger Monitoring

- A thorough and comprehensive monitoring infrastructure essential for the successful operation of the ATLAS detector
 - o A swift response to any problems particularly important for the trigger
- Trigger monitoring strategy on two fronts:
 - Online monitoring
 - · Performed by shifter in control room
 - Offline monioring
 - · Performed by trigger experts

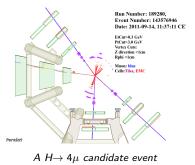
Trigger Monitoring: Online


Several tools specifically designed to monitor performance of trigger menu and algorithms

- Data quality monitoring display:
 - Automatic comparison of real-time data with reference histograms using comparison algorithms (e.g. Kolmogorov test)
 - Flagging of bad histograms
- Online Histogram Presenter:
 - $\circ\;$ Configurable, interactive histograms displayed for various distributions for each signature group
- Trigger Rate Presenter:
 - Real time rates vs predictions

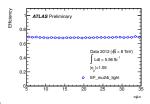
Trigger Monitoring: Offline

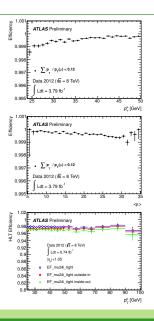
- A subset of the data is recorded immediately after running <u>express stream</u> to assess data quality
 - Comparison of trigger and offline quantities
 - Basic efficiency plots, kinematic distributions


- Events where trigger unable to decision recorded to *debug stream*
 - Most events have many Rols or high track multiplicity so a timeout occurs
 - Events recovered and integrated into physics streams
- <u>Reprocessed data</u> used to validate changes to trigger menu and software

Trigger Performance

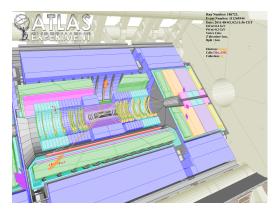
Muons


- Chatacterised by presence of track in MS and track in ID
 - Specific detectors devoted to triggering muons
- At L1, Rol information from RPCs and TGCs
- At L2 MDT information used, then MS track combined with ID
- Two complementary reconstruction algorithms at EF
 - InsideOut
 - OutsideIn
- L1 rates scale linearly with the instantaneous luminosity, pile-up robust
- Efficiencies measured in Z $ightarrow \mu\mu$ to < 1%



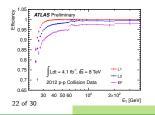
Muons

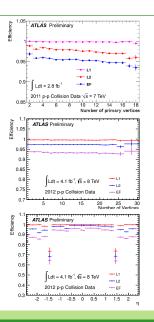
For 2012:


- Additional shielding installed
- Single muon trigger \rightarrow p_T > 24 GeV
- Di-muon trigger \rightarrow (p_T > 24 GeV) \times 2
- Require track and calorimeter isolation
 - Robust against pileup
 - See right

Electrons

- Single (25 GeV) and Di-electron (2×15 GeV) triggers used
- L1 algorithm uses hadronic veto (introduced during 2011 run)
- HLT selection similar to offline

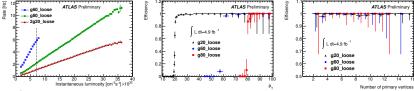



A high mass dielectron event

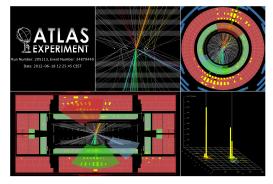
Electrons

For 2012:

- Raised L1 threshold 16 GeV \rightarrow 18 GeV
- Optimise electron identification at HLT for high pileup
- Require track and calorimeter isolation
- Improved performance with pileup in 2012

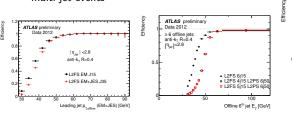


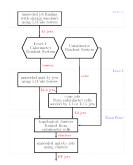
Photons

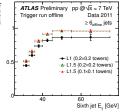

- Primary triggers require two photons
- > 99% efficiency for H $\rightarrow \gamma\gamma$
- Stable for 2011, some optimisation for 2012 For 2012:
 - Raise di-photon p_T thresholds
 - Tighten photon identification at HLT
 - Introduce 3-photon tiggers

A high mass diphoton event

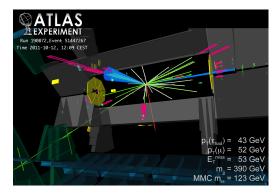
- Triggers use a range of jet sizes
- Pileup and noise suppression (introduced in 2011)
- Acceptance up to $|\eta| < 4.9$: forward jet triggers
- Also use b-tagging for b-jet triggers



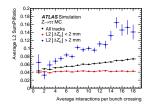

A high mass dijet event

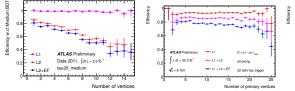

<u>Jets</u>

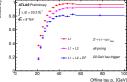
For 2012:


- Significant changes to L2
 - Full scan allows full detector coverage using trigger towers
 - $\circ~$ Availability of anti- k_{T} algorithm due to FastJet software
- Hadronic calibration at EF
- Pileup and noise suppression (introduced during 2011 run)
- σp_T and multi-jet triggers
 - Previous strategy gave degraded performance for multi-jet events

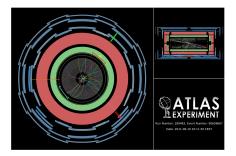
- au triggers identify hadronic au decays
- Exploit differences between τ and QCD jets
 - Narrow and isolated
 - Low track multiplicity
- Triggers optimised for ${\rm H} \rightarrow \tau \tau \text{ and } {\rm H}^+ \rightarrow \tau \nu$
- Used mostly in combination:
 e.g. di-τ, τ + MET




A H $\rightarrow \tau \tau$ candidate event

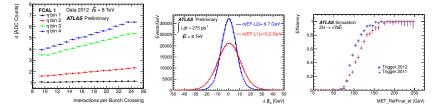

For 2012:

- L2 uses E_T and shape variables in Calorimeter and ID track information
 - $\circ~$ For 2012, cone used to compute these optimised to be pileup robust
- Introduce impact parameter requirements on ID tracks
- Use isolation at L1
- At EF, BDT used for τ identification



Missing Transverse Energy (MET)

- The MET trigger designed to select events including neutrinos or other particles which escape detector without interacting
- Trigger sums over calorimeter cells
- Potential large sensitivity to pileup
 - In 2011, trigger rate dominated by out-of-time pileup noise from forward calorimeter (FCAL)



 $A H \rightarrow WW \rightarrow l \nu l \nu$ candidate event

MET

For 2012:

- L1: Raised FCAL noise cut thresholds
 - Little impact on efficiency, rates significantly reduced
- L2: access to cell level information (as opposed to trigger tower information in 2011)
 - Significant improvement in rejection
 - Significant improvement in resolution
- EF: Cluster level calibration (common with jets)

Conclusion

- Successful data taking in LHC run I for ATLAS experiment
 - Underpinned by successful trigger operation
- Trigger operations have benefitted from throrough and careful trigger menu design and strategy
- Operation of trigger supported by a comprehensive monitoring infrastructure
- High selection efficiency across a broad range of physics signatures
- Adapted to changing conditions in a challenging, high pileup environment