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Extensive and ambitious physics programme
pursued by ATLAS

e Majority of processes of interest have
cross sections many orders of magnitude
below total

e Operating in a challenging environment!

e Processes of interest have a wide range of
physics signatures

LHC collides protons at 20 MHz

e In practice can only record around 400 Hz
for physics




Introduction
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ATLAS Online Luminosity

e 2010 pp 5 = 7 TeV/

—— 2011 pp V5 =7TeV

— 2012 pp Vs = 8 TeV
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e Significant ramp up in Luminosity

30 o W oct
Month in Year

e Consequence of this is a high pileup
environment

e Challenge to mantain trigger performance
with a high number of collisions per event




ATLAS Trigger
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Trigger menu and rates
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Luminosity Evolution
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Some Nomenclature

o A trigger chain is a sequence of algorithms (L1 — L2 — EF) used to select a
signal

o Similar trigger chains are collectively known as trigger signature groups
o e.g. chains relating to muons referred to as muon trigger signature group

e Accepted events are recorded into different datasets - streams
o Streams are designed such that overlap is minimised

e The full collection of trigger chains is known as the trigger menu

e In 2012, ATLAS ran with a delayed stream where events passing certain trigger
chains were stored for later reconstruction

o e.g. triggers for B-Physics
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Streams
ATLAS Trigger Operation 2012
600 Jets/missing E_ (delayed)
500 B-physics (delayed)
N 00 Minimum Bias
T Electrons/photons
£ 300
% 200 Jets/taus/missing E_
a4
100 Muons/B-physics
0
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e Output rates predominantly from R B O e Delayed)

jet/T/MET stream, e/~ and muon

1.2

I Muons [l Hadron (Delayed)
B Jet/Tau/Etmiss

Average Stream Rate [kHz]

streams - M Egamma
e Primary triggers enabled throughout Z::
run 0.4l
e As run progresses — luminosity drops 02;
— calibration /background chains 2305 28004 0306 0907 14008 18009

enabled
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Trigger Menu

Distribution of trigger rates for 7 x 103cm—2s—1:

Signature Group  Peak L1 Rate (Hz) Peak L2 Rate (Hz)  Average EF rate (Hz)
1201 100

o 14000 0
e/y 30000 2000 140
T 24000 800 35
Jets 3000 1000 35
MET 4000 800 30
B-jets 5000 900 45
B-physics 7000 50 20
Total 65000 5500 400

e Bandwidth distribution based on physics priorities

® Note that rates do not include delayed stream and totals take overlap into account
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Trigger Rates at L1

ATLAS Trigger Operations (Aug. 24, 2012)
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e Rates of Rol based triggers in general
proportional to luminosity

e Non-linear effects with pileup for global - =

triggers T s
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Trigger Rates at L1
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Trigger Rates at L1
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Trigger Monitoring
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Trigger Monitoring

e A thorough and comprehensive monitoring infrastructure essential for the
successful operation of the ATLAS detector

o A swift response to any problems particularly important for the trigger

o Trigger monitoring strategy on two fronts:

o Online monitoring

o Performed by shifter in control room

o Offline monioring

o Performed by trigger experts
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Trigger Monitoring: Online

Several tools specifically designed to monitor performance of trigger menu and
algorithms

e Data quality monitoring display:
o Automatic comparison of real-time data with reference histograms using
comparison algorithms (e.g. Kolmogorov test)
o Flagging of bad histograms

e Online Histogram Presenter:

o Configurable, interactive histograms displayed for various distributions for each
signature group

e Trigger Rate Presenter:
o Real time rates vs predictions
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Trigger Monitoring: Offline

e A subset of the data is recorded immediately after running - express stream - to
assess data quality

o Comparison of trigger and offline quantities
o Basic efficiency plots, kinematic distributions

e Events where trigger unable to
decision recorded to debug stream

Physics
Streams | | Streams

o Most events have many Rols or high  _______._]
track multiplicity so a timeout occurs

o Events recovered and integrated into
physics streams
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e Reprocessed data used to validate
changes to trigger menu and software
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Trigger Performance
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Muons

o Chatacterised by presence of track in
MS and track in ID

o Specific detectors devoted to
triggering muons

e At L1, Rol information from RPCs
and TGCs

e At L2 MDT information used, then
MS track combined with ID

e Two complementary reconstruction
algorithms at EF
o InsideOut
o Qutsideln

>

i

TN

Run Number: 189280,
Event Number: 143576946
Date: 2011-09-14, 11:37:11 CE'
E(Cut-03 GeV
PICuE3.0 GeV.
Verte Cuts:
2 direction <lcm
i <lem

blue
Tiles, EMC

A H— 4p candidate event

e L1 rates scale linearly with the instantaneous luminosity, pile-up robust

o Efficiencies measured in Z— pp to < 1%
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Muons

5 1001 :
§ , ATLAS Preliminary
For 2012: H e T
0999 +++ 3
e Additional shielding installed 099 E
oge7f + LP, Ip<0az 3
e Single muon trigger — pr > 24 GeV naof. D012 (B =87V E
Ldt=3791"

- - o 2‘5 3‘0 3‘5 4‘0 A‘5 5(
e Di-muon trigger — (pr > 24 GeV) X oo

51 T T T

2 § ATLAS Preliminary
. . B e e, +H
¢ Require track and calorimeter 0sss paarE
isolation 0998 E
o Robust against pileup oserf + L <o 3
S . h 099sE- Data 2012 (/s = 8 TeV) E
o} ee rig t J‘Ld\:379!b‘

o FLOR R R R R
-

5 T T ! 5 102
& ATLAS Preliminary | 8 1E ATLAS Preliminary |
g ] § OSekeegmisesererts et | 1
08 B 5 0.96F N - ' $
[0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-00% T 094 |
06 | 092 Baia 2012 (5= 8Tew 3
£ Data2012(E=8TeV) 1 0.9F Lit=074t e
04 Lat=55610" 1 088 o8 E
F 1 P 3
ozl <105 E by S 3
£ o EF_mu24i tight ] 0.82F ¢ EF_mu2ai_tightinside-out 3
1‘0 1‘5 2‘0 2‘5 3‘0 35 0 3‘0 4‘0 5‘0 6‘0 70 5‘0 9‘0 100
< P [GeV]

20 of 30



Electrons

Single (25 GeV) and
Di-electron (2x15 GeV)
triggers used

e L1 algorithm uses hadronic
veto (introduced during 2011
run)

e HLT selection similar to
offline

A high mass dielectron event
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Electrons
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Photons

e Primary triggers require two photons
® > 99% efficiency for H— vy

e Stable for 2011, some optimisation for 2012

For 2012:

e Raise di-photon pr thresholds
e Tighten photon identification at HLT

e Introduce 3-photon tiggers

T T T T ™
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Jets

e Triggers use a range of jet
sizes

e Pileup and noise suppression
(introduced in 2011)

e Acceptance up to || < 4.9:
forward jet triggers

e Also use b-tagging for b-jet
triggers

A high mass dijet event
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Jets

For 2012:
e Significant changes to L2
o Full scan allows full detector coverage using trigger
towers
o Availability of anti-kt algorithm due to FastJet
software

Calorimeter
Readout System

unsceded auti-hr jots
using L1Calo towers

e Hadronic calibration at EF
o e ol
. . . . . Kty
e Pileup and noise suppression (introduced during
2011 run)
e opr and multi-jet triggers
o Previous strategy gave degraded performance for
multi-jet events > : ‘
H ATLAS Preliminary pp @\'s =7 TeV
] Trigger run offline Data 2011
5 12 T T T T T T H ATLAS preliminary j w 2 640 JetS
H E ATLAS preliminary S 4 Data2012 | 1 i s T
] £ 012 e £ =6 offi e — =
gt P " ;&i’f‘ﬁi&f R e t
o8f - 4 [N |<28 . e
L e In_|<28 . -
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ol " S 3 .‘ - ears 4115 (0.1x0.1 towers)
o02ob t “+L2FS EM+JES J35 E .o o L2Fs 41\5 L2PS 65
i . o L2FS 515 L2PS 6]50|
30730 B0 80708090 % 50 100 40 60
Leading jetp, . (EM+JES) [GeV] Offine 6" jet E, [GeV] Sixth jet E, [GeV]
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Taus

ATLAS

e T triggers identify hadronic 7 EXPERIMENT
decays

e Exploit differences between 7
and QCD jets

o Narrow and isolated
o Low track multiplicity

e Triggers optimised for
H—77and HT — v

e Used mostly in combination: VT ey’
o eg. di-t, 7+ MET

A H— 77 candidate event
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Taus

For 2012:

e L2 uses E7 and shape variables in Calorimeter and ID track information

o For 2012, cone used to compute these optimised to be pileup robust

e Introduce impact parameter requirements on 1D § o10- ATLAS Saton .
T o T E

tracks : 0.14F :fgflAaquﬁs<2mm + +++’

E 0125« L2]aZy|>2mm + E|

. . g ok +erg E

e Use isolation at L1 2 oos 4 o
0.06F it'H’H**“H 3

] 0.04f ioﬁ**mwm E

e At EF, BDT used for 7 identification oo 3

o Significant improvement in rejection power
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Missing Transverse Energy (MET)

e The MET trigger designed to select
events including neutrinos or other
particles which escape detector
without interacting

e Trigger sums over calorimeter cells

e Potential large sensitivity to pileup

o In 2011, trigger rate dominated by
out-of-time pileup noise from forward
calorimeter (FCAL)

A H— WW — lvlv candidate event
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MET

For 2012:

e L1: Raised FCAL noise cut thresholds

o Little impact on efficiency, rates significantly reduced

e L2: access to cell level information (as opposed to trigger tower information in

2011)

o Significant improvement in rejection
o Significant improvement in resolution

e EF: Cluster level calibration (common

7 ABA
£ FCAL 1
3 ——nbin1
o nbin 2
8 nbin 3
< —~-nbin4
©

0 12
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Conclusion

o Successful data taking in LHC run | for ATLAS experiment

o Underpinned by successful trigger operation

e Trigger operations have benefitted from throrough and careful trigger menu
design and strategy

o Operation of trigger supported by a comprehensive monitoring infrastructure

High selection efficiency across a broad range of physics signatures

Adapted to changing conditions in a challenging, high pileup environment
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