

ALICE Trigger Overview

R. Lietava on behalf of the ALICE collaboration

The University of Birmingham

Triggering Discoveries in High Energy Physics

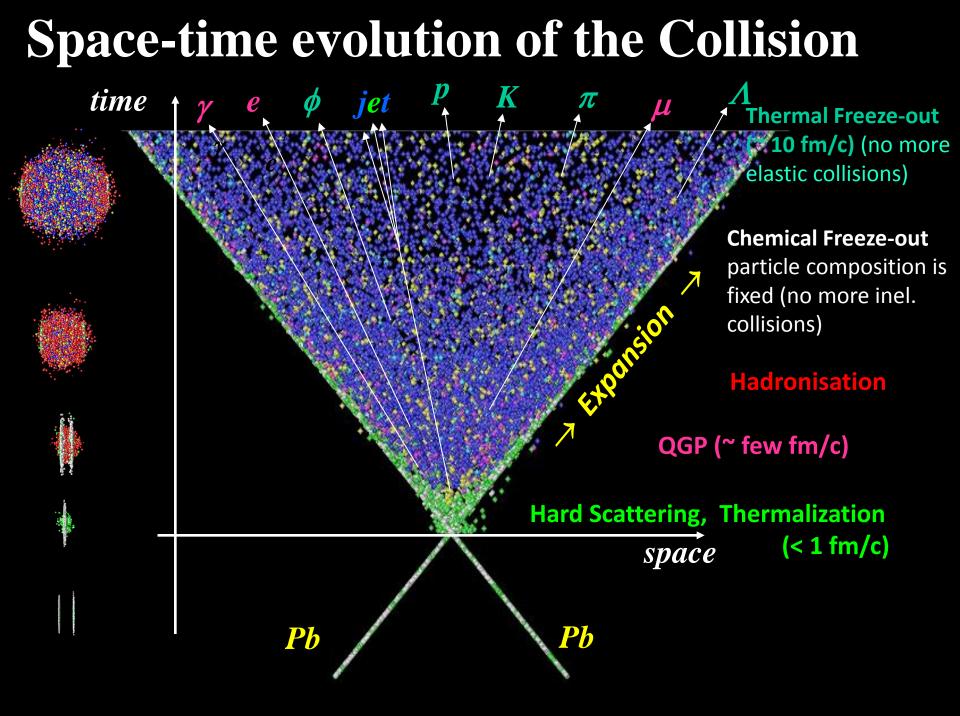
9-14 September 2013, Jammu, India

Content

- ALICE physics
- Trigger requirements
- Central Trigger Processor (CTP)
- Trigger Distribution
- Local Trigger Unit (LTU)
- Control and Monitoring
- Upgrades

ALICE physics

DA-A


 properties of the Quark Gluon Plasma and the QCD Phase Transition

D p-A

initial state effects

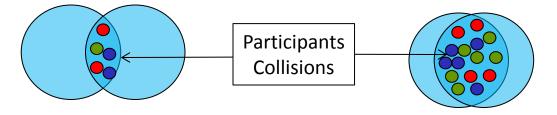
🗖 р-р

- reference to AA
- minimum bias physics => soft QCD (underlying event)
- unique pp physics with Alice (baryon transport, charm cross section)

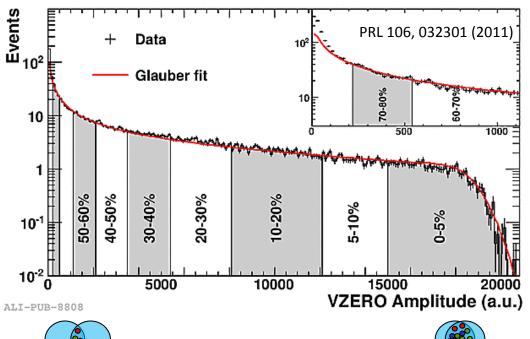
Observables

Soft observables

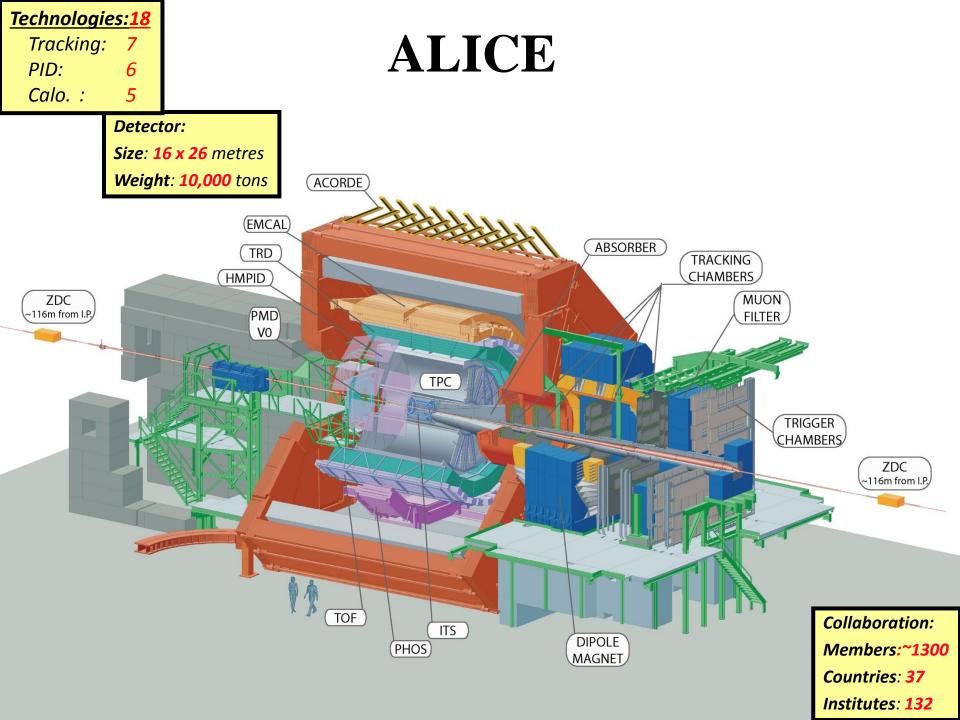
- Particle yields and spectra
- HBT correlations
- Flow and fluctuations


Hard probes

- Jets
- Heavy flavour
- Quarkonia
- Photons
- Electroweak bosons


Geometry of Heavy Ion Collisions

We can control (a posteriori) the geometry of heavy ion collisions

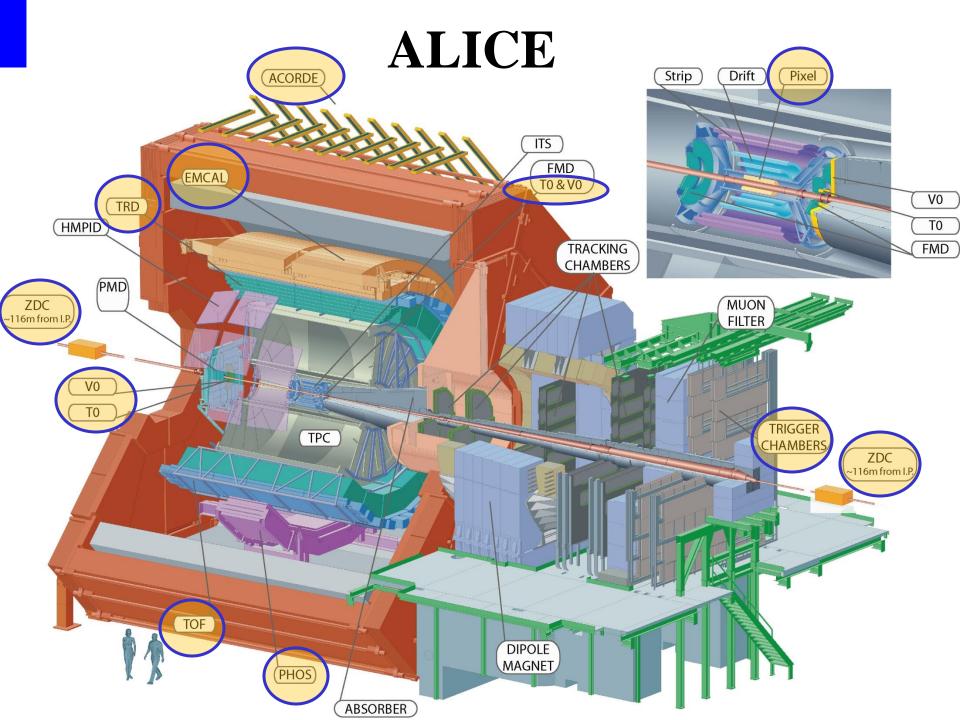

Central

Peripheral

Centrality Variables: • percentile of hadronic cross section

ALICE trigger challenges

- Select different physics
 - Different triggering detectors
- Optimise for different running scenarios pp, pA, AA – with different interaction rates
- Optimise rates according to physics requirements
 - downscaling
- Optimise use of detectors with widely different busy times (generally no pipelining)
 - Detector grouping trigger clusters
- Different latency requirements
 - 3 trigger levels


Selecting different physics

Minimum bias and Centrality: V0,T0,SPD,TOF

 Global variables (identified particle spectra , HBT, flow, nuclear modification factors)

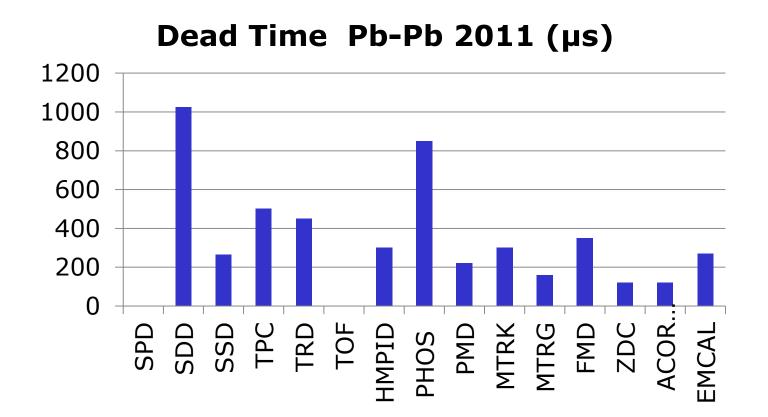
Jets: EMCAL,PHOS

- Jets in medium (quenching, fragmentation)
- Photons/electrons: EMCAL, PHOS, TRD
 - π⁰, η, charm, beauty, quarkonia
- Muons: Muon Arm
 - Charm, beauty, quarkonia
 - Weakly interacting probes (W,Z)
- Ultra peripheral: V0,ZDC,SPD
 - QED lepton pair production, elmag dissociation, photonuclear reactions

Alice Running Conditions

	рр	Pb-Pb 2010	Pb-Pb 2011	p-Pb 2013
$< \mathcal{L} > cm^{-2}s^{-1}$	1×10^{31}	2×10^{25}	3×10^{26}	1 × 10 ²⁹
σ _{inel} (mb)	70	8000	8000	2500
rate (Hz)	1 × 10 ⁶	1.6×10^{2}	2.5 10 ³	2×10^5
Multiplicity Density	3.6	1600	1600	17

□ Pb-Pb:


- modest luminosity rates
- large event size (~100MB)
- Rate of recorded events several hundred per second
- D pp:
 - ALICE Luminosity limited < 10³¹ cm⁻² s⁻¹ due to 100 µs TPC drift time

Optimise Rates

Class prefix	Clusters (* no ACE)	Description	classes	Downscaling	L2a rate @ 180kHz
CTRUE-[B,ACE]	ALLNOTRD	No bias	2	rnd = 50 Hz	3
CINT7-[B,ACE]	ALL, ALLNOTRD	Min. bias VOAND	4	fixlum = 30 Hz/b	35
CSHM7-[B,ACE]	ALL, ALLNOTRD*	Centrality	3	fixpower4 = 40 Hz/mb	5
CPHI7-[B,ACE]	ALL, ALLNOTRD	PHOS LO	4	fixloss = 39 Hz/mb	7
CEMC7-[B,ACE]	CENT, CENTNOTRD	EMCAL L0 (thr. 3 GeV, rejection 100)	4	fixloss = 5.1 Hz/mb	3.5
CEMC7EG1-B	CENT, CENTNOTRD	EMCAL L1 gamma high, ~2kHz L0 inspection	2	0	16
CEMC7EG2-B	CENT, CENTNOTRD	EMCAL L1 gamma low, ~2kHz L0 inspection	2	x os = 23 Hz/mb	3.5
CEMC7EJ1-B	CENT, CENTNOTRD	EMCAL L1 jet high, ~2kHz L0 inspection	2N		18
CEMC7EJ2-B	CENT, CENTNOTRD	EMCAL L1 jet high, ~2kHz L0 inspection EMCAL L1 jet low, ~2kHz L0 inspection EMCAL-TRD L1, ~ 2kHz L0 inspection	2	fixloss = 9.2 Hz/mb	4
CEMC7WUHEE-B	CENT	EMCAL-TRD L1, ~ 2kHz L0 inspection	1		0
CINT7WUHJT-[B,ACE]	CENT,FAST*	TRD L1 jet, ~10kHz L0 instantion	3	fixloss = 28 Hz/mb	LOa:
CINT7WUHSE-[B,ACE]	CENT,FAST*	TRD L1 electron. 71 kHz Loinspection	3	fixloss = 28 Hz/mb	CENT ~ 6.5k
CINT7WUHQU-[B,ACE]	CENT,FAST*	TRD L1 gur chium, ~10kHz L0 inspection	3	fixloss = 28 Hz/mb	FAST ~ 7.3k
CMSL7-B	ALLNOTRD	Single nuon low-pt for mu-hadron cor.	1	fixloss = 4 Hz/mb	9
CMSL7-[B,ACE]	MUON	Single muon low-pt	2	fixlum = 3 Hz/mb	180
CMSH7-B	MUON	Single muon high-pt	1		150
CMLL7-B	MUÓN	Dimuon like-sign low-pt	1	fixlum = 10 Hz/mb	50
CMUL7-B	MUON	Dimuon unlike-sign low-pt	1		200
CMUP8-[B,ACE]	ALLNOTRD	UPC muon forward	2		12
CMUP9-[B,ACE]	ALLNOTRD	UPC muon semi-forward	2		8
CCUP7-[B,ACE]	CENTNOTRD	UPC central barrel	2		10
COLSR-ABCE	CENTNOTRD	Calibration: TPC laser	1		
COTVX-[B,ACE]	ALLNOTRD	Lumi monitoring: 0TVX	2		
CVGO-ABCE	ALLNOTRD	Bgd monitoring: A or C (downscaled)	1	fixed = 0.005%	0.7
Total TPC rate			50		170

Detector Dead Time

Detector Dead Time: average time of BUSY after valid trigger. Dead Time depends on:

- Readout time
- Multi-event buffer

Trigger Latency

Different detectors have different latency requirements – 3 trigger levels:

- 🗖 70
 - received by detectors 1.2 µs after interaction (generation, propagation and CTP decision)
 - 24 inputs
- 🗖 L1
 - 6.5 μs after L0
 - 24 inputs
- 🗖 L2
 - 105.2 μs after L0
 - 12 inputs

Central Trigger Processor

	FI	FI	FI	FI	FI	FI	BUSY	LO	L1	L2	FO	FO	FO	FO	FO	FO	INT
		••••		••••	- 😮												0●
			~ 🛈		~ 🛈	~ 🛈	Cluster BUSY 9 0 0 0 9 2 0	Cluster L 2 0 2 0 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cluster L 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	Cluster L	CTP outputs						
6U VME boards:							о о 6 О т О	• 6 От Орр	• 6 • T	о 6 О т		CT	CT	CT		CL	
BUSY	•	•	•	•	•	•	BC O				utputs	CTP outputs	CTP outputs	CTP outputs	utputs	CTP outputs	A ScopeProbe
LO	∽ 😮	∽ 🕄 ∞ 🕄	∽ ()	∞	∽ 💽	∽ 🕄	Orbit				CTP outputs	CTP 0	CTP 0	CTP 0	CTP outputs	CTP 0	о́ О В
L1	• 🕄 = 🕃	• : ≘:	∘ : ≘:	• 🕄 = 🕃	• 🛈 = 💽	• : ≘:	nputs	r inputs	r inputs								Rol interface
L2	:-::	: : : : : :	= : :::::::::::::::::::::::::::::::::::	:	= 🛈	: : :	BUSY inputs	L0 trigger inputs	L1 trigger inputs		auts	uts	uts	uts	uts	uts	2
FO											CTP outputs						
INT		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·				BUSY inputs	inputs	L1 trigger inputs	inputs							IQU
							BUSY in	L0 trigger inputs	L1 trigger	L2 trigger inputs	CTP outputs						
											5		5		5	5	
							1	2	3	4	5	6	7	8	9	10	11

Boards communicate via customised backplane

Trigger Class

Trigger Conditions:

Logical combination of trigger inputs:

- Any logical function of first 4 inputs
- AND of other inputs
- Bunch Crossing (BC) mask:
 - Defines which BC are inspected for interaction in the ORBIT
 - Usually corresponds to LHC filling scheme

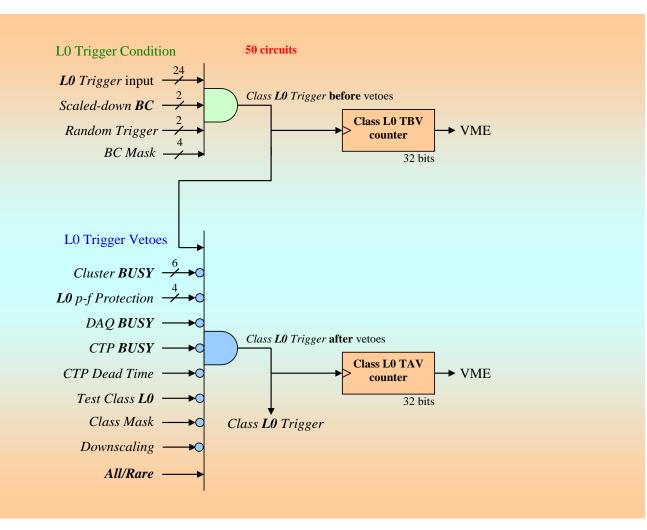
Internal trigger:

- BC downscale
- Random

Trigger Cluster:

Group of detectors to be read out

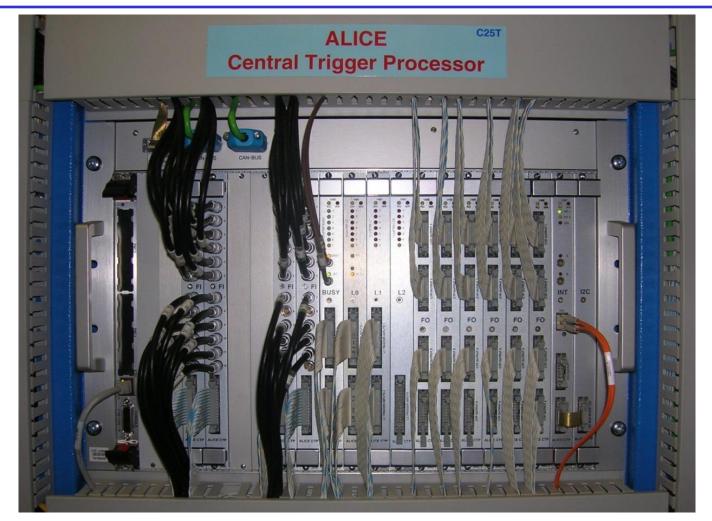
Trigger Class = Trigger Condition + Trigger Cluster 15


Trigger Vetos

Even if Trigger Condition is true Class can fail:

- Cluster Busy
- CTP Busy
- DAQ Busy
- Downscaling
- CTP dead time

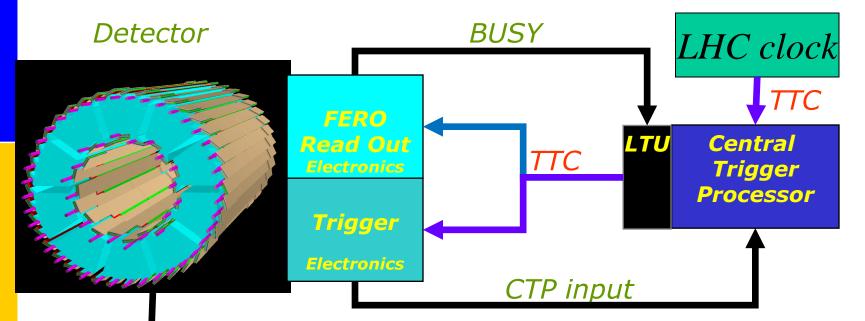
Trigger Class = Trigger Condition + Trigger Cluster + + Trigger Vetoes


Trigger Class Logic

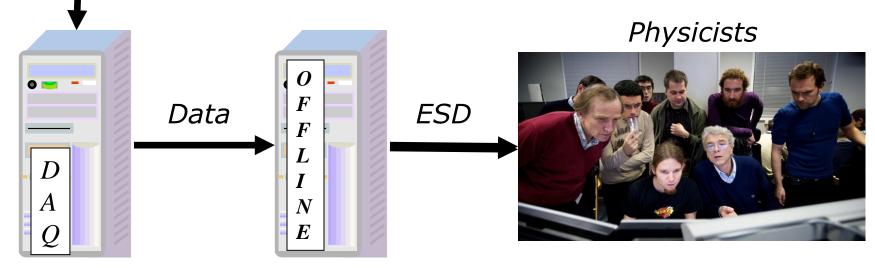
CTP Summary

- 3 levels
- 50 classes
 - 4 BC mask per class
 - 2 BC and 2 Random internal generators
 - Several types of downscaling
 - Past-future protection
- 24 detectors
- 6 clusters of detectors
- Software/calibration trigger generation

Central Trigger Processor

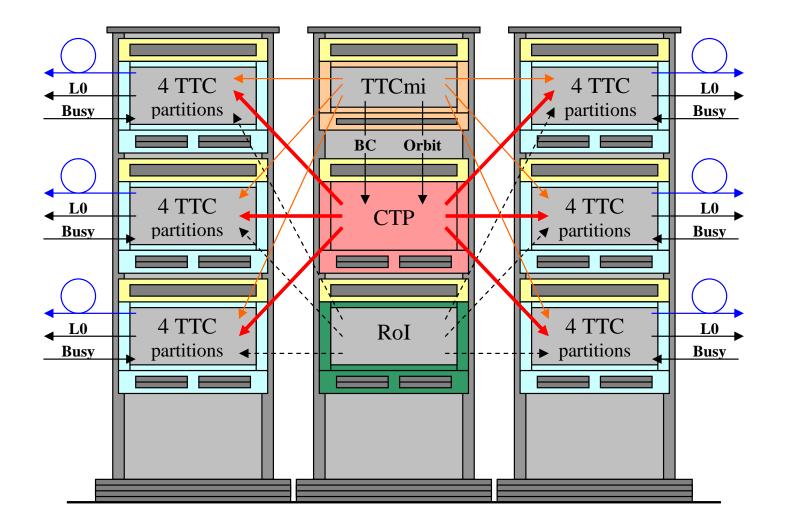

CTP triggers are sent to Local Trigger Units (LTUs) where conversion to output format occurs

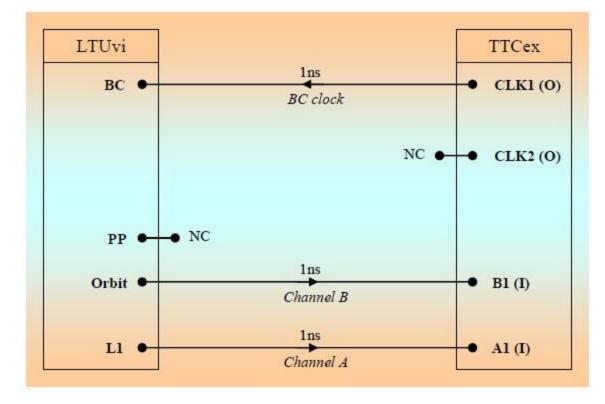
Trigger Distribution


Timing, Trigger and Control system (TTC)

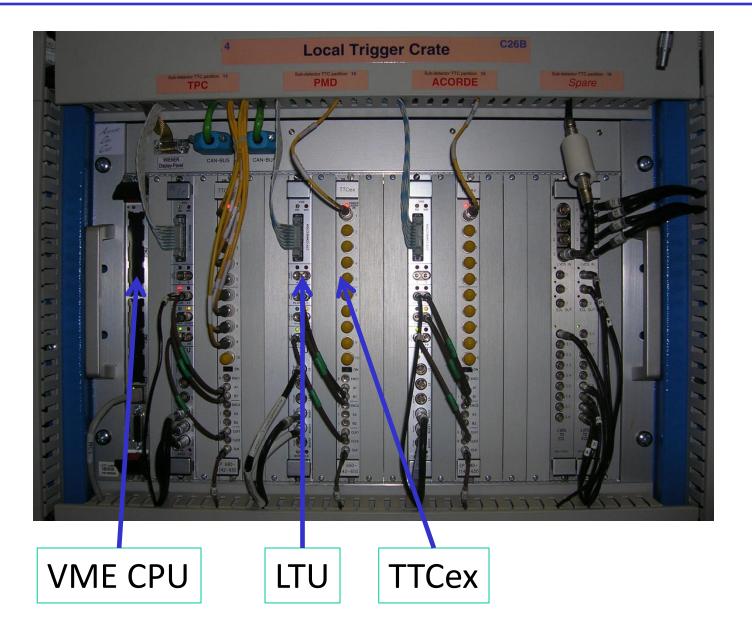
- LHC standard
- Distributes clock and triggers
- Two multiplexed channels A and B
- Passive optical network
- ALICE trigger protocol
 - L0 synchronous signal in channel A or LVDS cable
 - L1 synchronous signal in channel A + asyn message B
 - L1 reject = missing L1
 - L2a/L2r asynchronous message in B

Signal distribution


Detector Data


Local Trigger Unit - LTU

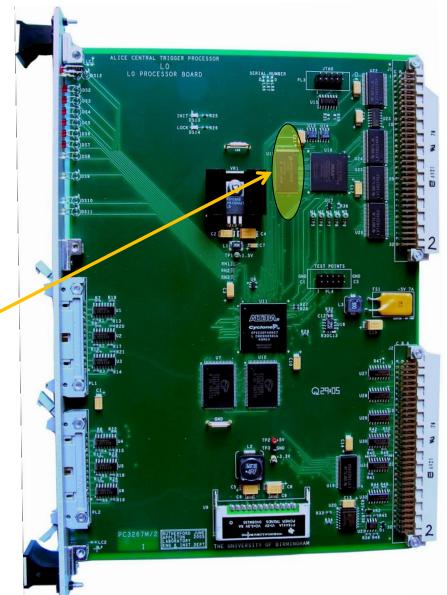
- Interface between CTP and Detector
- Global mode
 - conversion of the CTP data messages into the adopted TTC format for the L1 Message, the L2a Message and the L2r Word
- Local mode
 - Emulates full trigger sequences including timing
 - Detector development and debugging


Layout of ALICE trigger system

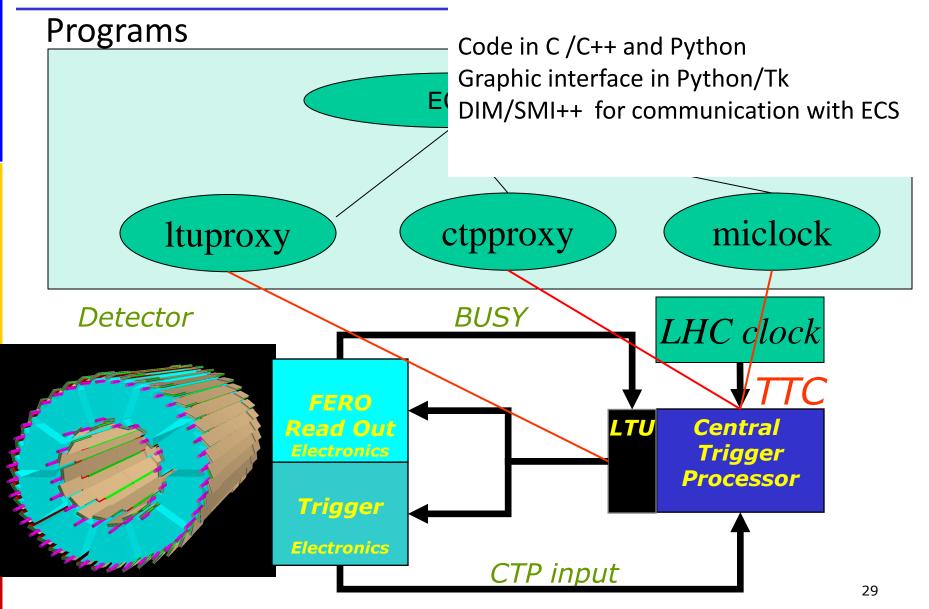
TTC partition

TTC partition

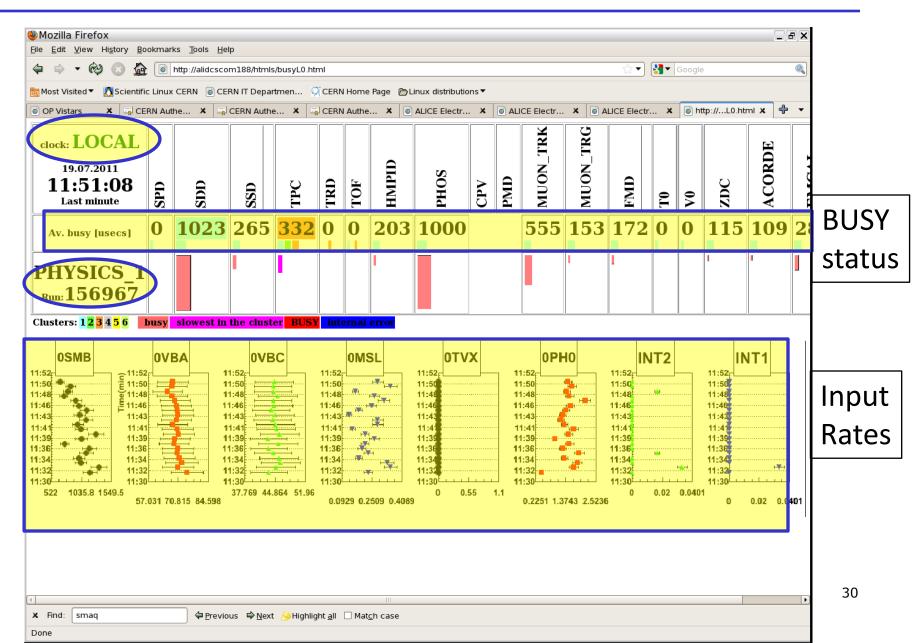
Part of CTP team (~2006)


CTP Control and Monitoring

- Configure and control CTP
- Interface to ALICE Experiment Control System (ECS)
- Monitor the correct function of trigger
- Provide debugging facilities when fault occurs


CTP/LTU Board Monitoring

Counters:


- CTP ~ 1000 counters
- LTU ~ 100 countres
- Read via VME CPU
- Snapshot memory
 - Records 1M of selected signals
 - Monitoring
 - Debugging

CTP control

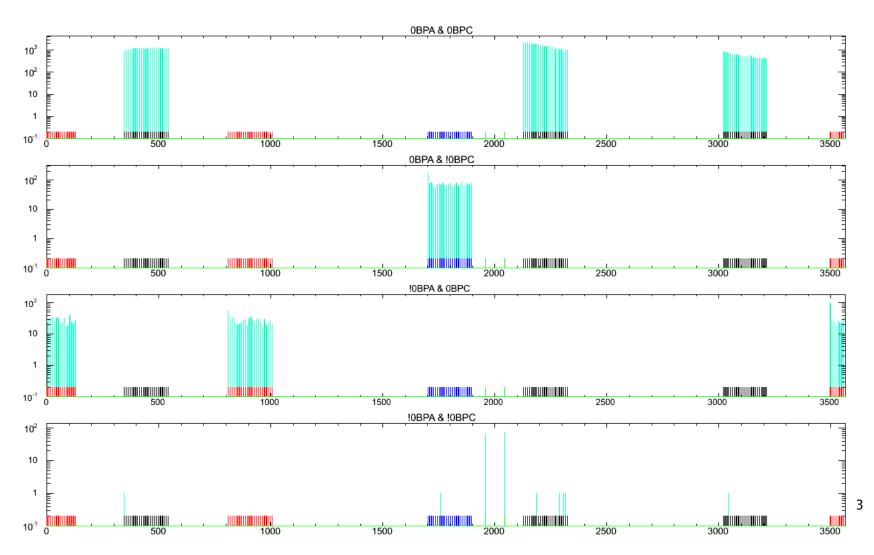
Global Run Status

LTU proxy status

Name	Status	Logs
trd	started	log
zdc	started	log
emcal	started	log
tpc	started	log
pmd	started	log
acorde	started	log
sdd	started	log
muon_trk	started	log
muon_trg	started	log
daq	started	log
ssd	started	log
fmd	started	log
tO	started	log
hmpid	started	log
phos	started	log
cpv	started	log
spd	started	log
tof	started	log
v0	started	log

Name	Status	Logs
trd	started	log
zdc	started	log
emcal	started	log
tpc	started	log
pmd	started	log
acorde	started	log
sdd	started	log
muon_trk	started	log
muon_trg	started	log
daq	started	log
ssd	started	log
fmd	started	log
t0	started	log
hmpid	started	log
phos	started	log
срv	stoped	log
spd	started	log
tof	started	log
V0	started	log

LTU software


		CTP emu	lator					
VME crati = = ×	Sequence: L2a.seq							
itu.	Examine SLM	Load seq	uence	Sequencer e	Sequencer editor			
Stdfuncs								
Snapshot Memory		Errors enabled						
	Error on demand:							
CTP Emulator	Pre-pulse L0 L1	L1 Message	L1&L1 Message	L2a Message	L2r Word			
readCNTS2SHM	error error error	r error	error	error	error			
Scope Signals	Random error generation allowed	for:	Error signal rate:	0×0				
Counters	L1 message Complete L1m		LHC Gap					
Configuration	format:Complete L1m		Veto OFF					
SimpleTests	Automatic START signal selection: not selected							
quit	Generate SW 'Start signal	(\$)' # of :	signals: 1	spacing[ms]:	0			
	Check emulation status	Start emulation	Break emulation	e	Quit nulation			

- Sequence execution triggered by Start signal derived from BC scaled down, random generator, external pulser or software request
- The LTU board can generate incomplete sequences or different types of errors can be introduced, either randomly or "on demand" with CTP emulator in LTU software

AFFAIR

A Flexible Fabric and Application Information Recorder

BPTX checker

AFFAIR

Cluster info: ALLNOTRD-B1

Summary

CTP performs according to specifications. ALICE data samples collected:

- □ November 2010:
 - pp at 7 TeV ~ 17/μb
 - 1st Pb+Pb collisions at 2.76 TeV ~ 4/μb
- November/December 2011:
 - pp at 7 TeV ~ 2/pb
 - pp at 2.76 TeV ~ 20/nb
 - 2nd Pb+Pb collisions at 2.76 TeV ~80/μb
- September 2012:
 - pp at 8 TeV ~ 5/pb
 - Pilot run p Pb ~ 1/μb
- January/February 2013
 - p Pb collisions: ~50 /μb (Min Bias) + 30/nb (muons)

Future Plans

2013-2014 – Long Shutdown 1 (LS1)

- Completion of detector (TRD, Calorimeters)
- CTP upgrade (see Marian Krivda's talk tomorrow)
- **2015-2017**
 - 10 x increase in statistics in Pb-Pb at √s =5.5 TeV, i.e ≈ 1nb⁻¹ to be collected
- 2018 ALICE upgrade Long Shutdown 2 (LS2)
 - High precision measurements of rare probes at low p_T:

Increase rate capability – continuous readout and new online systems (for CTP see MK talk tomorrow)

Improve vertexing and low p_T tracking – new silicon vertex tracker

2019-2021 (Ar-Ar,p-Pb,Pb-Pb)

10nb⁻¹

CTP upgrade after LS1

- New CTP level to improve triggering efficiency of TRD
- 100 classes (currently 50)
- 8+1 clusters
- New L0 board
- Firmware upgrade of all boards

For CTP after LS1 see M. Krivda talk

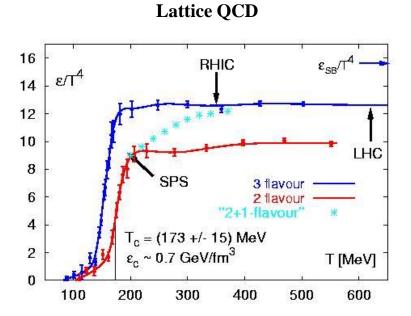
ALICE upgrade after LS2

- luminosity upgrade 50 kHz target minimum-bias rate for Pb–Pb
- run ALICE at this high rate, inspecting all events
- improved vertexing and tracking at low p_T
- preserve particle-identification capability
- new, smaller radius beam pipe
- new inner tracker (ITS) (performance and rate upgrade)
- high-rate upgrade for the readout of the TPC, TRD, TOF, CALs, DAQ-HLT, Muon-Arm and Trigger detectors
- collect more than 10 nb⁻¹ of integrated luminosity
 - implies running with heavy ions for a few years after LS3
- for core physics programme factor > 100 increase in statistics
 - (maximum readout with present ALICE ~ 500 Hz)
- for triggered probes increase in statistics by factor > 10

For CTP after LS2 see M. Krivda talk

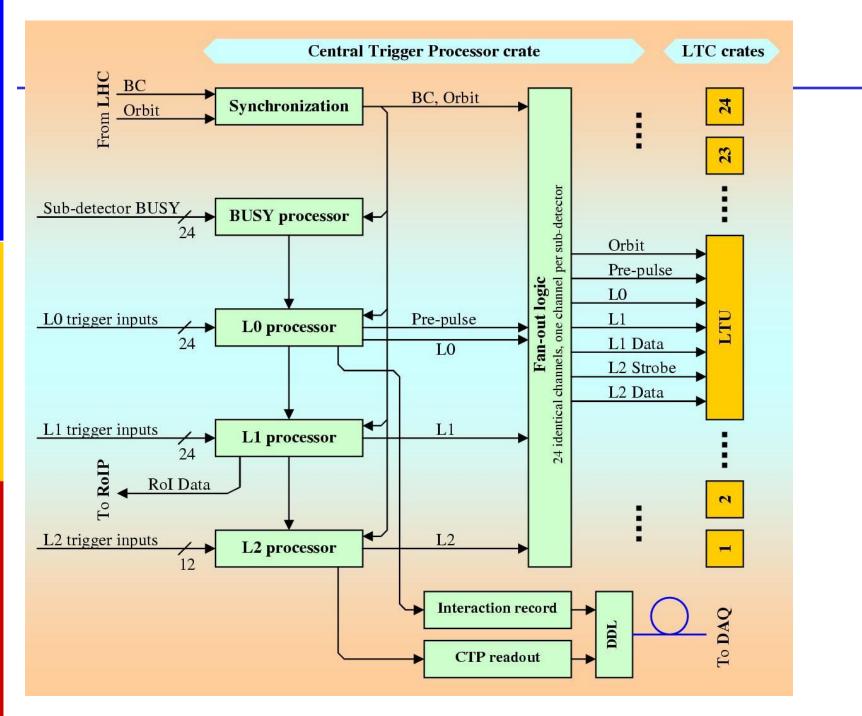
BACK UP

ALICE focus after LS2

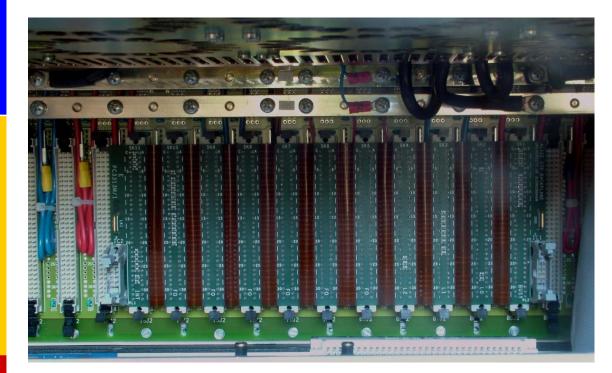

Precision measurement of the QGP parameters at $\mu_b = 0$ to fully exploit scientific potential of the LHC – unique in:

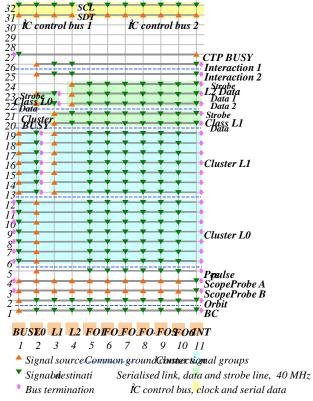
- large cross sections for hard probes
- high initial temperature
- Main physics topics, uniquely accessible with the ALICE detector:
 - measurement of heavy-flavour transport parameters:
 - study of QGP properties via transport coefficients (η /s, q)
 - measurement of low-mass and low-p_T di-leptons
 - study of chiral symmetry restoration
 - space-time evolution and equation of state of the QGP
 - J/ ψ , ψ' , and χ_c states down to zero p_T in wide rapidity range
 - statistical hadronization versus dissociation/recombination

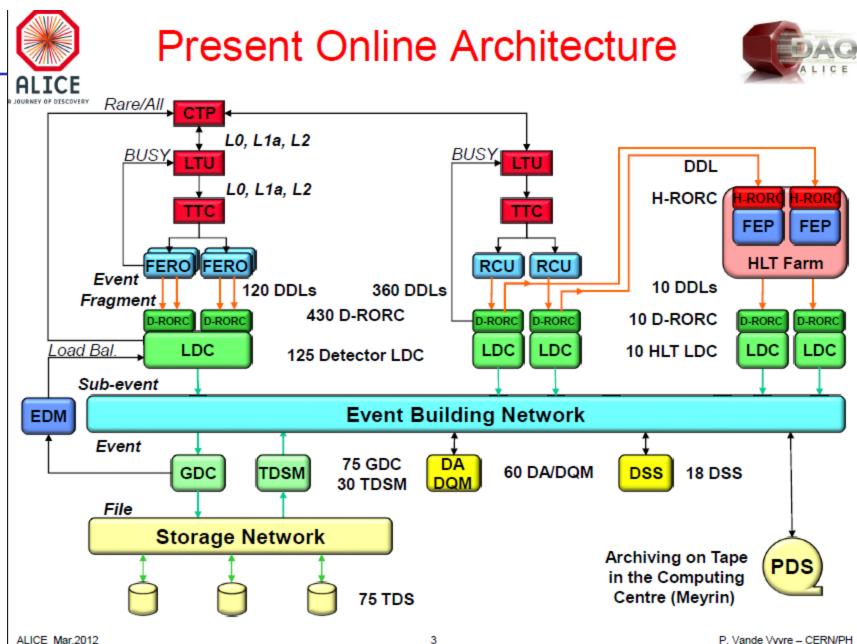
The QCD Phase Transition


The QCD phase transition:

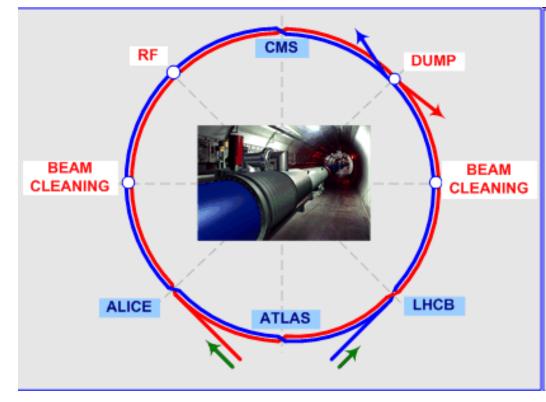
- Cross over for physical quark masses
- Confinement and χ transitions both at T~170 MeV
- QGP is not an ideal gas




$$p = \frac{\varepsilon}{3} = \left(g_B + \frac{7}{8}g_F\right)\frac{\pi^2 T^4}{90}$$


Heavy Ion collisions study hadronic matter at finite temperature

CTP backplane



ALICE Mar.2012

LHC Basics

- Protons/ions are in bunches
- Bunches are separated
 - 7.5 m in space
 - •25ns in time = 40 MHz
 - LHC clock 40 MHz
- Interaction Point (IP): crossing of rings
- ORBIT
 - •1 full round ~ 89 μ s
 - •3564 bunches
- Bunch Crossing (BC): crossing of two bunches in IP
- •LHC filling scheme:
 - how many bunches are injected
 - •their position in the ORBIT

