Color Glass Condensate signatures and phenomenology at RHIC and LHC.

Prithwish Tribedy

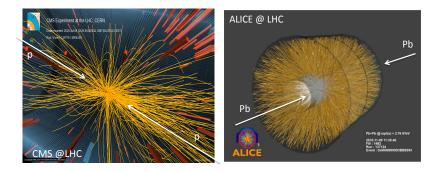
Variable Energy Cyclotron Center, Kolkata, India

Sept 10, 2013

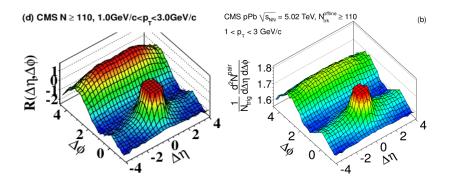
Triggering Discoveries in High Energy Physics, Jammu, India

Outline

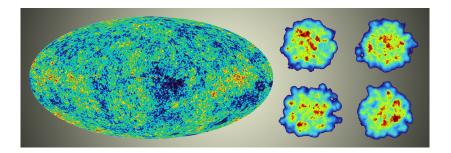
- Intoduction.
- DIS processes at HERA and Gluon Saturation.
- ► The Color Glass Condensate & framework of CYM.
- Inclusive multiplicity & multi-particle correlation.
- Modelling initial stage geometry in p+p, p+A and A+A collisions.



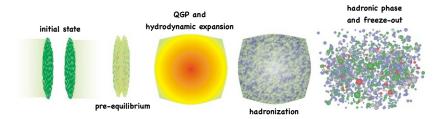
- Why does number of produced particles fluctuate from event-to-event ?
- Can we calculate how many particles are produced in an *ab-initio* approach?



How does collimation come? What is the source of intrinsic ridge and long range correlation?



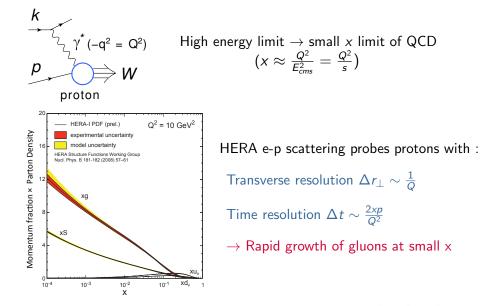
What is the scale of initial quantum fluctuations in the mini-bang ?



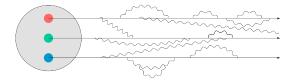
Standard model of heavy ion collisions:

- How to get an *ab initio* description of the early stages of HIC?
- How to constrain the transport coefficients ?

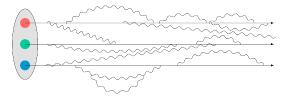
DIS process at HERA



High energy hadrons/nuclei



Hadron at rest



At high energies interaction time scales of fluctuations dilated well beyond typical hadronic time scales.

Boosted hadron

DIS: Snapshot of hadrons/nuclei

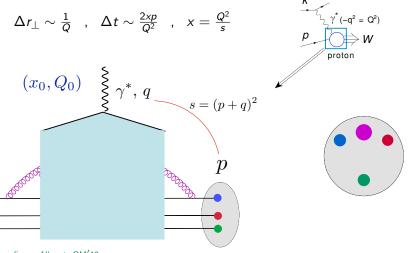


figure: Albacete QM'12

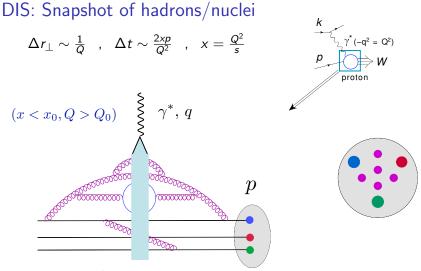
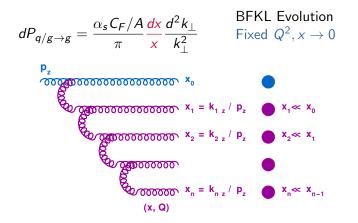


figure: Albacete QM'12

Finer resolution reveals more sub structure (higher Fock states) at smaller x, $|H\rangle = |qqq\rangle + |qqqg\rangle + \cdots + |qqqgg\dots gg\rangle$

QCD evolution equations

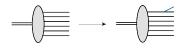


Probability of emitting n gluons \rightarrow enhanced by large logarithms

$$\mathcal{P}(n) \sim \frac{1}{n!} \left(\alpha_s \ln \left(\frac{x_0}{x} \right) \right)^n$$

QCD evolution equations

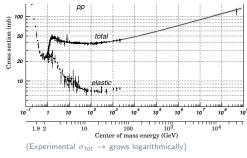
BFKL growth is linear



BFKL equation:

PDF
$$xg(x) \approx \int d^2k_{\perp}\phi(x,k_{\perp})$$

$$\begin{array}{l} \displaystyle \frac{\partial \phi(x,k_{\perp})}{\partial \log(x_0/x)} & \approx \mathcal{K} \otimes \phi(x,k_{\perp}) \\ \quad \rightarrow \phi_{\rm BFKL} \sim x^{\alpha_s} \\ \quad \Rightarrow \sigma_{tot}^{p+p} \sim s^{\alpha_p-1} \end{array}$$

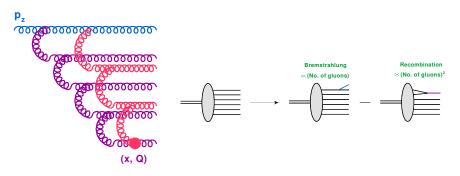


イロト イポト イラト イラト

Linear Bremstrahlung growth of PDF \rightarrow power law growth of cross section \rightarrow Violates black disc limit as $\sigma_{tot} \leq 2\pi R^2$ Froissart - Martin unitarity bound ($\sigma_{tot} \sim \ln^2 s$)

QCD Evolution equations

Non-linear recombination processes constrain the growth \rightarrow Saturation

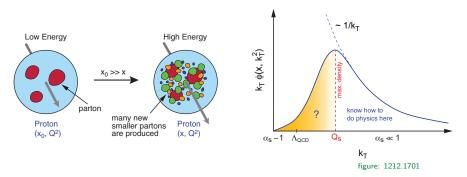


$$\frac{\partial \phi(x, k_{\perp})}{\partial \log(x_0/x)} \approx \mathcal{K} \otimes \phi(x, k_{\perp}) - \phi(x, k_{\perp})^2 \quad BK/JIMWLK \text{ equation}$$

Non-linear equation gives rise a scale, $Q_s^2(x) \rightarrow \text{saturation scale.}$

Gluon saturation

No of gluons of a fixed size saturates due to phase space constrain.



Density saturates with max. occupancy $\sim \mathcal{O}(\frac{1}{\alpha_s})$ for $k_T \leq Q_S(x)$

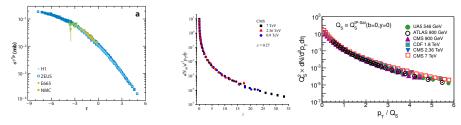
Higher energy \rightarrow larger $Q_s \gg \Lambda_{QCD}$, effective coupling $\alpha_S(Q_S)$ is small

Geometric scaling

DIS cross section scales with

 $\tau = \frac{Q^2}{Q_S(x)^2}$ $\sigma_{DIS}(x, Q^2) = \sigma_{DIS} \left(Q^2 / Q_S^2(x) \right)$

 $\begin{array}{l} p{+}p \text{ multiplicity scales with} \\ \tau = \frac{p_T^2}{Q_S(x)^2} \text{ or } \frac{p_T}{Q_S} \,, \left(x \equiv \frac{p_T}{\sqrt{s}} e^{\pm y} \right) \\ \frac{1}{\sigma} \frac{dN_{ch}}{d\eta d^2 \rho_T} = F \left(\frac{p_T}{Q_S(p_T/\sqrt{s})} \right) \end{array}$

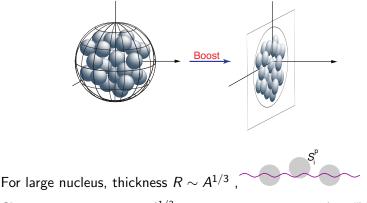


Stasto, Golec-Biernat & Kwiecinski 2001 Levin, Tuchin '99, Iancu, Itakura, McLerran '02

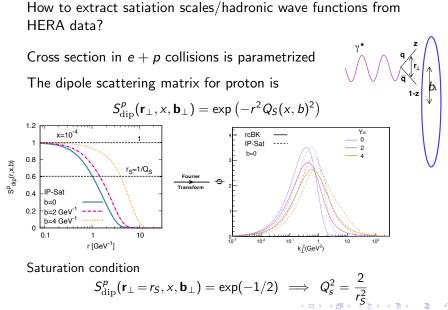
Saturation scale $Q_S(x)$ is the dominant scale controlling the dynamics of particle production in e + p and p + p.

Universality and Nuclear oomph

Gluon saturation \rightarrow Universal phenomenon to hadrons/nuclei.



Gluon momentum gets $\rightarrow A^{1/3}$ transverse momentum random "kicks" Nuclear Saturation scale $(Q_s^A)^2 \approx A^{1/3} (Q_s^p)^2 \rightarrow$ Nuclear *oomph*



Saturation models of HERA DIS

Bartels, Golec-Biernat, Kowalski Kowalski, Teaney

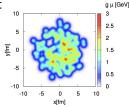
17 / 54

Color charge distribution inside Nuclei

The nuclear scattering matrix is obtained as

 $i \rightarrow$ nucleons are distributed according to Fermi dist $S_{dip}^A \rightarrow$ distribution of nuclear saturation scale \rightarrow distribution of color charge density.

Lumpy color charge density distribution $g^2 \mu(\mathbf{x}_{\perp}) \sim Q_s(\mathbf{x}_{\perp})$



18/54

イロト イポト イヨト イヨト

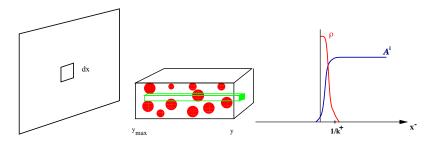
Kowalski, Lappi, Venugopalan 0705.3047 Lappi, arXiv:0711.3039, 1104.3725

Color Glass Condensate

McLerran & Venugopalan hep-ph/9309289

イロト イポト イヨト イヨト

High energy Nuclei/hadrons \rightarrow large parton density \rightarrow classical approx.



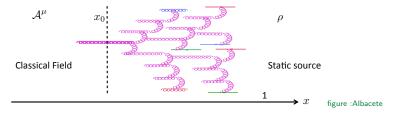
In the limit $1/Q_S << dx << 1~{
m fm}$ one can neglect

 $\mid [\mathcal{Q}^{\textit{a}}, \mathcal{Q}^{\textit{b}}] \mid = \mid \textit{if}^{\textit{abc}} \mathcal{Q}^{\textit{c}} \mid \ll \mathcal{Q}^{2}$

Random distribution of classical color charge.

Color Glass Condensate

- Color: QCD (gluons carry color charge)
- Glass: Stochastic interactions, dynamics on very long time scales (time dilation).
- ► Condensate: Fields with large occupation # ~ 1/α_S with mom. peaked at k_T ≈ Q_S



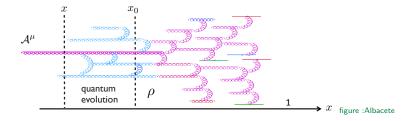
A weak coupling effective theory with

- Fast (large-x) partons \rightarrow static classical color source ho
- Slow (small-x) partons \rightarrow classical gluon fields \mathcal{A}^{μ} .

Color Glass Condensate

Quantum evolution of the color sources

given by Renormalization Group description (BK/ JIMWLK).

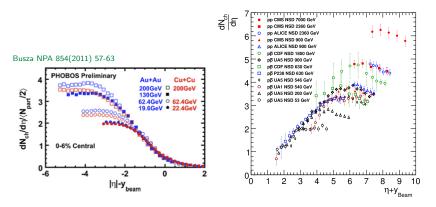


 $x_0 \rightarrow x$ Integrating out degrees of freedom between x and x_0 .

Color Glass Condensate:

The Renormalization picture is evident in data.

Limiting fragmentation in A + A and p + p.



 $x \sim e^{\pm y}/\sqrt{s} \Rightarrow$

- ► Large rapidities d.o.f → independent of energy.
- ▶ new physics → additional d.o.f at small rapidity.

22 / 54

Color Glass Condensate: McLerran-Venugopalan model

Solve classical Yang-Mills equations

$$[D_{\mu}, F^{\mu\nu}] = J^{\nu}$$

for color current due to colliding sources (ρ_1 and ρ_2)

$$J_{a}^{\nu} = g \delta^{\nu+} \delta(x^{-}) \rho_{1,a}(\mathbf{x}_{\perp}) + g \delta^{\nu-} \delta(x^{+}) \rho_{2,a}(\mathbf{x}_{\perp})$$

- Extract the gauge field after collision for given color charge configuration.
- ► Final observables O(p₁, p₂) should be averaged over color charge configuration

$$\langle \mathcal{O} \rangle = \int [\mathrm{d}\rho_1] [\mathrm{d}\rho_2] W_y[\rho_1] W_y[\rho_2] \mathcal{O}(\rho_1,\rho_2).$$

Color Glass Condensate: McLerran-Venugopalan model

Averaging $\langle \mathcal{O} \rangle \Rightarrow$ connection between sources \Rightarrow color correlation. In the MV model

$$W[\rho] \equiv \exp\left(-\int d^2 \mathbf{x}_{\perp} \frac{\rho^a(\mathbf{x}_{\perp})\rho^a(\mathbf{x}_{\perp})}{2\mu_A^2}\right) \begin{bmatrix} 10 & 10 & 10 \\ 0 & 0 & 0 \end{bmatrix}$$

Yang-Mills introduces non-local correlation over length scale $1/Q_s$ \rightarrow Glasma flux tube picture.

Gauge fileds after collisions :

- Analytical calculation possible for lowest order of sources. For dilute-dilute(p+p) or dilute-dense(p+A) $\rightarrow k_T$ - factorization.
- For dense-dense (A+A) systems \rightarrow numerical solution on lattice.

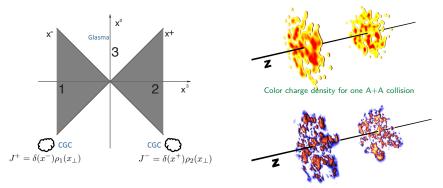
x[fm]

gμ[GeV]

IP-Glasma : Classical Yang-Mills approach on 2+1D lattice

Schenke, Tribedy, Venugopalan PRL 108(2012)

E-by-E solve CYM for two colliding nuclei



Two point correlator for one A+A collision

 $\rho(\mathbf{x}_{\perp})$ sampled from local Gaussian distribution $W[\rho]$

$$\left\langle
ho^{a}(\mathbf{x}_{\perp})
ho^{b}(\mathbf{y}_{\perp})
ight
angle = \delta^{ab}\delta^{2}(\mathbf{x}_{\perp}\!-\!\mathbf{y}_{\perp})g^{2}\mu^{2}(\mathbf{x}_{\perp})$$

lattice implementation Krasnitz, Venugopalan, hep-ph/9809433 Lappi, hep-ph/0303076 p $q \equiv p$ $q \equiv p$ $q \equiv 0$ $Q \in 1000$

25 / 54

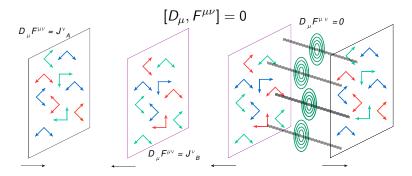
IP-Glasma : CYM evolution after collision

Kovner, McLerran, Weigert

The field after collision at au = 0 has simple relation

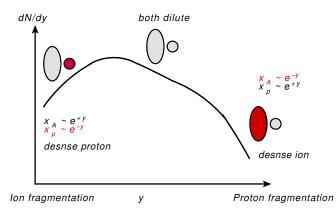
$$A^{i} = A^{i}_{(A)} + A^{i}_{(B)}, \ A^{\eta} = \frac{ig}{2} \left[A^{i}_{(A)}, A^{i}_{(B)} \right]$$

The fields are evolved at $\tau > 0$ according to



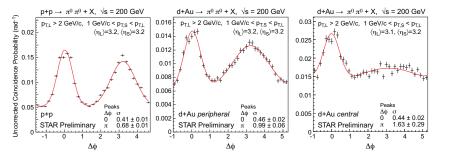
Schenke, Tribedy, Venugopalan PRC 86(2012)

$p{+}A$ collision at RHIC/LHC



・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ク へ や 27 / 54

di-hadron correlation in d+A



Di-hadron correlations measured at forward rapidities at RHIC:

・ロト ・ 日 ・ ・ 主 ・ ・ 主 ・ つ へ (* 28 / 54

Suppression factor in d+A/p+A collisions

Quantum correction to gluon production (BK evolutions) predicts strong suppression at higher energy and larger rapidities.



Kharzeev, Kovchegov, Tuchin '03 Kharzeev, Levin, McLerran '02, Albacete '03

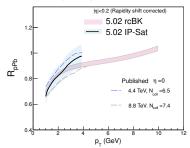
STAR nucl-ex/0602011

No other theory predicts this \rightarrow confirmed at RHIC.

Suppression factor in d+A/p+A collisions

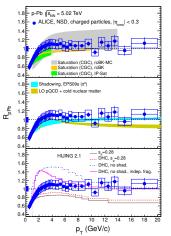
R_{pA} predictions confirmed by ALICE

Tribedy, Venugopalan 1112.2445



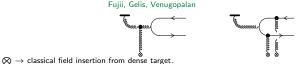
 $R_{pPb} \sim 1$ for $p_T \geq 2$ GeV, Growth of proton size (Gribov diffusion) important.

ALICE collab, 1210.4520



Quark-Pair production in CGC framework

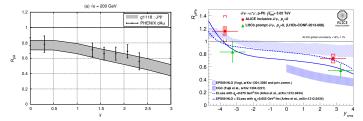
Contributions will come from



 $k_{\mathcal{T}}$ -factorization not possible and involves higher point correlators $\langle \tilde{\upsilon}\tilde{\upsilon}^{\dagger}\tilde{\upsilon}\tilde{\upsilon}^{\dagger}\rangle$ \rightarrow can be related to $S(\mathbf{x}_{\perp}, \mathbf{X}_{\perp})$ & un-integrated gluon distribution.

Fujii & Watanabe

Arnaldi INFN '2013

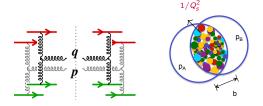


More supression in proton fragmentation region. Growth of proton size (b), e-by-e fluctuations effects can also be included.

Multiparticle production & sub-nucleonic fluctuations.

Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated multi particle production from disconnected diagrams connected by color averaging.



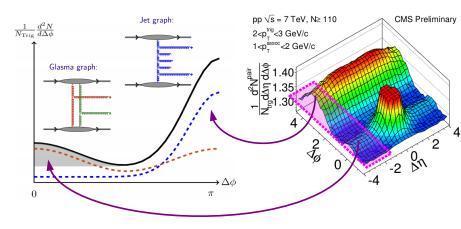
Yang-Mills introduces non-local gauge-field correlation over length scale $1/Q_s \rightarrow$ Glasma flux tube picture.

Two-particle correlation \rightarrow ridge phenomenon. n-particle correlation \rightarrow Negative-binomial fluctuation.

Gelis, Lappi, McLerran 0905.3234

Ridge phenomenon in p+p and p+Pb

Dusling and Venugopalan

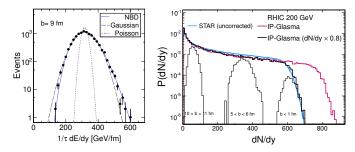


Origin of ridge \rightarrow quantum interference. A preferable momentum in hadron w. f. is essential for collimation.

Negative binomial fluctuation

Sources of multiplicity fluctuations are:

- Initial color charge fluctuation at sub-nucleonic length scale $1/Q_S$.
- ► E-by-E fluctuation of nucleon position and impact parameter.
- \rightarrow IP-Glasma generates negative-binomial transverse energy and multiplicity fluctuation Non-perturbatively.



Limiting case of NBD \rightarrow Bose-Einstein (BE) distribution.

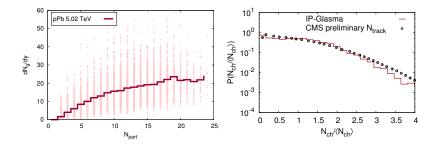
Single color gluon emitted from single flux tube \rightarrow BE distribution. Many sources of color \rightarrow entropy maximisation.

Schenke, PT, Venugopalan PRC 86(2012)

Multiplicity fluctuation in proton+nucleus collisions

Signatures yet to be tested:

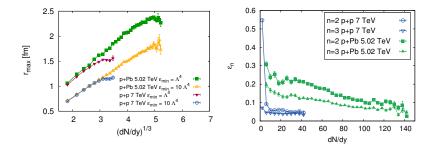
Centrality distribution with number of participants of collisions \rightarrow saturates at large N_{part} , logarithmic increase.



Very different centrality dependence from Wounded nucleon model Bzdak, Skokov 1307.6168

Initial geometry in p+p and p+A/d+A collisions

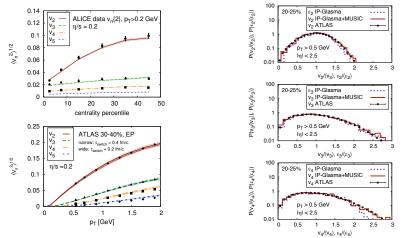
System size (very similar) and initial eccentricities (very different) for same multiplicity.



 $r_{max} \rightarrow \text{maximal radius with } \varepsilon_{\min} \sim \Lambda_{\text{QCD}}^4$ $r_{max} \propto (dN/dy)^{1/3}$, comparable HBT radii in p+p and p+Pb. p+p $\rightarrow \epsilon_{2,3}$ are significantly smaller and flat with multiplicity. Smaller eccentricities for high multiplicity events.

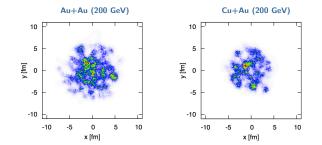
Initial geometry and fluctuations in A+A

IP-Glasma provides good description of initial geometry and fluctuations in Pb+Pb and Au+Au.



A combined Yang-Mill + viscous hydro calculation for the first time describes all measured harmonics and its e-by-e fluctuations.

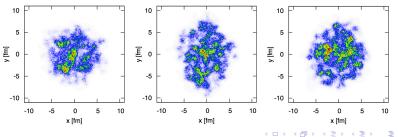
Energy density (ϵ) from IP-Glasma model (at $\tau = 0$)



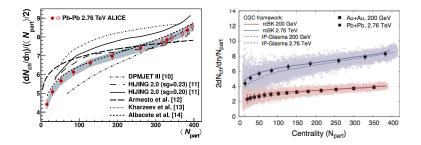
U+U (Tip-Tip)

U+U (Side-Side)

U+U (Random)



Centrality dependence in A+A at LHC

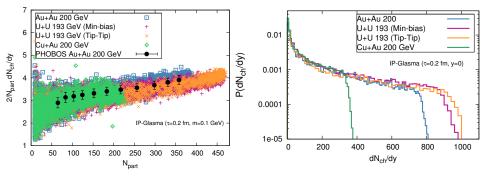


ALICE 1012.1657

CGC centrality dependence of $A + A \rightarrow$ consistent with ALICE.

Centrality dependence in A+A at RHIC

▶ Local Running coupling on each point on lattice $\alpha_s(Q_s^{max}(\mathbf{x}_{\perp}))$



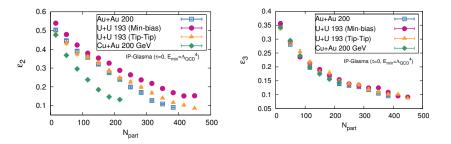
Larger systems \rightarrow smaller multiplicity per participants. U+U min-bias & tip-tip are very close unlike 2-component model.

 $\frac{dN_{ch}}{dy} \sim \frac{Q_s^2 S_\perp}{\alpha_S(Q_s^{max})}, \text{ for Tip-Tip U+U, } Q_s^2 \uparrow \text{ but } S_\perp \downarrow$

Eccentricity for different systems

The spatial eccentricities that characterize the geometry

$$\varepsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}, \, \langle \cdots \rangle \to \text{weight } \epsilon(\mathbf{x}_{\perp}, \tau)$$



- \triangleright ε_2 very sensitive to initial geometry of colliding system.
- Fluctuation driven moment ε_3 are very similar for different systems.

(a)

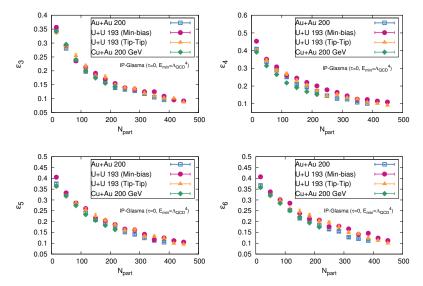
Summary

- CGC is an universal descrip1on of high energy saturated hadron/nucleus, an *ab inito* (first principle) approach.
- Powerful framework for wide range of system e+p, e+A, p+p, p+A, A+A.
- Phenomenologically successful in describing bulk features of data, difficult in conventional pQCD approach.
- Multi particle production can be studied in detail, consistently describes global data over wide range of energies/systems.
- Framework includes different sources of quantum fluctuations, successful describe the initial dynamics of heavy ion collisions.

BACK UP SLIDES

<ロト < 部 > < 注 > < 注 > 注 > うへ(~ 43/54

Higher order moments ϵ_3, ϵ_5



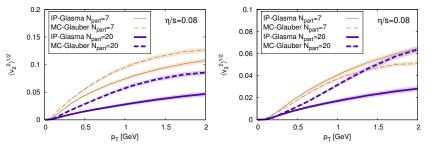
Fluctuation driven moments are very similar for different systems.

44 / 54

(a)

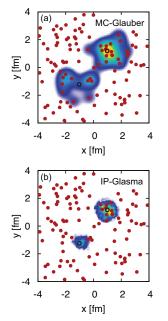
Flow in p+A collisions.

A strong dependence on choice of initial conditions for large N_{part} .



Both v_2 and v_3 are smaller in IP-Glasma compared to MC-Glauber.

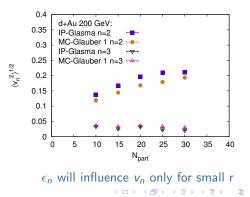
Flow in d+A collisions at RHIC.



Deuteron nucleus sampled from,

$$\phi_{\mathrm{pn}}(r) = rac{1}{\sqrt{2\pi}} rac{\sqrt{ab(a+b)}}{b-a} rac{e^{-ar} - e^{-br}}{r}$$

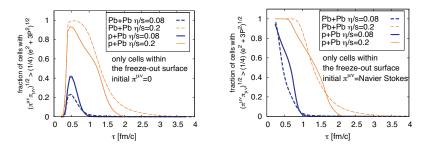
 $\langle r \rangle \sim$ 2.52 fm \rightarrow separated regions



Viscous correction in smaller sized systems

Relative magnitude of the ideal and the viscous terms are compared over the evolution time $T^{\mu\nu} = T_0^{\mu\nu} + \pi^{\mu\nu}$ Switch IP-Glasma \leftrightarrow Hydro $\tau = 0.2$ fm, $\frac{\eta}{s} = 0.2$ (fits to Pb+Pb data),

25 % viscous correction:

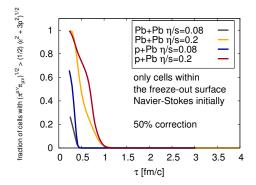


Navier-Stokes initialization $\pi_0^{\mu\nu} = \eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\lambda} u^{\lambda} \right)$

Large correction $(\sqrt{\pi_{\mu\nu}\pi^{\mu\nu}}/\sqrt{e^2+3P^2})$ over significant fraction of life time.

Viscous correction in smaller sized systems Life time of $p+Pb \sim \frac{1}{6}$ life time of Pb+Pb.

50 % viscous correction:



Might question reliability of second order viscous hydrodynamics for smaller systems.

IP-Glasma : Multiplicity and Energy density E-by-E soln. of CYM equation on 2+1D lattice $\rightarrow F^{\mu\nu}(\tau, \mathbf{x}_{\perp}, \eta)$.

▶ Multiplicity (n): $F^{\mu\nu}(\tau, \mathbf{x}_{\perp}, \eta) \rightarrow \mathcal{H}(\mathbf{x}_{\perp})$ (Hamiltonian density) Fourier transform $\mathcal{H}(\mathbf{k}_{\perp}) \rightarrow$ number density $n(\mathbf{k}_{\perp})$ of gluon, $\mathcal{H}(\mathbf{k}_{\perp}) \sim n(\mathbf{k}_{\perp})\omega(\mathbf{k}_{\perp})$, assuming dispersion relation, $\omega(k) = k$

In the transverse Coulomb Gauge :

$$\frac{dN_g}{dy} = \frac{2}{N^2} \int \frac{d^2 k_T}{\tilde{k}_T} \Big[\frac{g^2}{\tau} \operatorname{tr} \left(E_i(\mathbf{k}_\perp) E_i(-\mathbf{k}_\perp) \right) + \tau \operatorname{tr} \left(\pi(\mathbf{k}_\perp) \pi(-\mathbf{k}_\perp) \right) \Big]$$

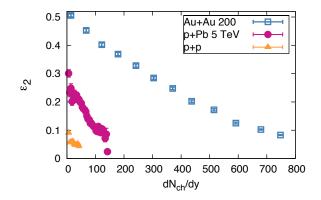
• Energy density (ϵ): $F^{\mu\nu} \rightarrow T^{\mu\nu}$ (stress energy tensor).

$$T^{\mu
u} = -g^{\gamma\delta}F^{\mu}_{\ \gamma}F^{
u}_{\ \delta} + rac{1}{4}g^{\mu
u}F^{\gamma}_{\ eta}F^{\ \delta}_{\ \gamma}$$

solving eigen value eq. $u_{\mu}T^{\mu\nu} = \epsilon u^{\nu}$ gives ϵ and flow u^{ν} $T^{\mu\nu}_{CYM}$ can be Landau matched with viscous hydro.

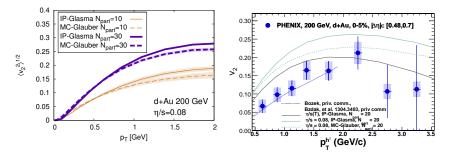
Gale, Jeon, Schenke, Tribedy, Venugopalan 1209.6330

p+p, p+A and A+A eccentricities



・ロト <
引 ト <
言 ト <
言 ト ミ の へ ()
50 / 54

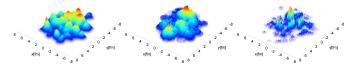
Flow in d+A collisions at RHIC.



<ロ > < 部 > < 言 > < 言 > 言 の < で 51/54

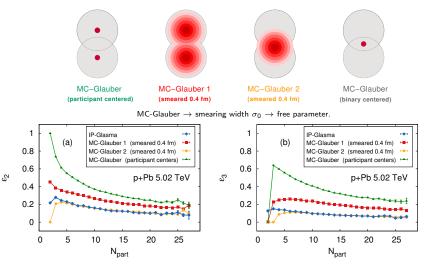
Different models of initial conditions.

I.C.	Geometry	k _T – factorization	Classical Yang-Mills
framework	2-component	CGC	CGC
	model	perturbative	non-perturbative
E-by-E	\checkmark	\checkmark	\checkmark
Sub-nucleonic	×	×	\checkmark
fluctuation			
Time	×	×	\checkmark
evolution			
Initial	×	×	\checkmark
flow			
NBD	by	by	\checkmark
fluctuation	hand	hand	



Comparison with MC-Glauber model

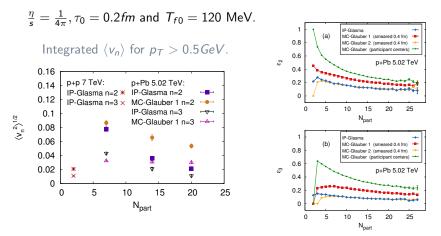
Bzdak, Schenke, PT, Venugopalan



Very different behaviour at small N_{part} , would effect v_n/ϵ_n computation. Binary centered \leftrightarrow IP-Glasma, no energy deposition due to pure gauge fields outside overlap.

Flow in p+p and p+A collisions.

Viscous hydrodynamic simulation using MUSIC with IP-Glasma & MC-Glauber 1 (participant centred, smeared 0.4 fm)



Flow in p+p and p+Pb at large N_{part} are similar for IP-Glasma. N_{part} dependence of $v_2 \rightarrow$ high sensitivity on initial conditions.