Proton elastic impact factors for 2,3 and 4 gluons

Leszek Motyka

Hamburg University & Jagellonian University, Kraków

Overview

Motivation

Baryon light-cone wave functions

Baryon impact factors

Small x evolution in the t-channel

Implications

Based on results obtained with Jochen Bartels

Motivation

Small x evolution of color dipole (photon) scattering is well known: BFKL equation + unitarity corrections

Pattern of unitarisation for color dipole scattering was established: BFKL Pomeron fan diagrams (γ^*A) and BFKL Pomeron loops ($\gamma^*\gamma^*$)

Neccessary to describe DIS at low $Q^2 \ {\rm and} \ {\rm DDIS}$ in HERA

In contrast, little is know about baryon scattering and small-x evolution of baryon scattering amplitudes

Important problem: color dipole formalism justified for $N_c
ightarrow \infty$

Non-planar corrections get enhanced by number of quarks = N_c .

Dipole model approach does not seem to close [Praszałowicz, Rostworowski]

 \longrightarrow We try conventional *t*-channel evolution approach at $N_c = 3$

Baryon wave function in infinite momentum frame

loffe current for the proton

$$\eta(x) = \varepsilon_{\kappa_1 \kappa_2 \kappa_3} \left[\left(u^{\kappa_1}(x) \right)^T C \gamma^{\mu} u^{\kappa_2}(x) \right] \gamma_{\mu} \gamma_5 d^{\kappa_3}(x)$$

Vertex: proton \rightarrow quarks

Gluon coupling

Evaluation in helicity basis in infinite momentum frame \longrightarrow proton light cone wave function

Baryon wave function from gluon coupling

In high energy limit all diagrams for proton \rightarrow quarks transition

$$p + \overbrace{g + g + \dots + g}^{n \text{ gluons}} \longrightarrow u u d$$

with any number n of gluons give universal amplitudes with quark momenta \boldsymbol{p}_i evaluated at the vertex

These amplitudes need to be Borel-transformed in order to eliminate poles of quark propagators [Balitsky, Lipatov]

$$\begin{aligned} \mathcal{B}' \,\mathcal{B} \,f(P^2, P'^2) & \text{with} \quad f(P^2, P'^2) & \sim \quad \frac{1}{P^2 + P^2 - M_X^2} \frac{1}{P'^2 + P'^2 - M_X'^2} \\ \\ \frac{1}{P^2 + P^2 - \frac{p_1^2}{\alpha_1} - \frac{p_2^2}{\alpha_2} - \frac{p_3^2}{\alpha_3}} & \longrightarrow \quad \exp\left[-\left(\frac{p_1^2}{\alpha_1} + \frac{p_2^2}{\alpha_2} + \frac{p_3^2}{\alpha_3} - P^2\right) / M^2\right] \\ \end{aligned}$$
[Brodsky, Lepage]

-----> Baryon wave function dependent on quark longitudinal and transverse momenta, and helicities

The impact factor

Baryon impact factor

Color factor:

$$\mathcal{C}(\text{diagram}) = \frac{\varepsilon^{\kappa_1' \kappa_2' \kappa_3'} \varepsilon^{\kappa_1 \kappa_2 \kappa_3}}{3!} \left[t^{a_l} t^{a_{l-1}} \dots t^{a_1} \right]_{\kappa_1' \kappa_1} \left[t^{b_m} t^{b_{m-1}} \dots t^{b_1} \right]_{\kappa_2' \kappa_2} \left[t^{c_n} t^{c_{n-1}} \dots t^{c_1} \right]_{\kappa_3' \kappa_3}$$

Kinematic part:

$$\mathcal{F}^{\lambda\lambda'}(\{\boldsymbol{l}_i\};\boldsymbol{P},\boldsymbol{P}') = \sum_{\lambda_1,\lambda_2,\lambda_3} \int [d^2\boldsymbol{p}_i] [d\alpha_i] \Psi_{\lambda}^{(\lambda_1,\lambda_2)\lambda_3}(\{\alpha_i\},\{\boldsymbol{p}_i\};\boldsymbol{P}) \left[\Psi_{\lambda'}^{(\lambda_1,\lambda_2)\lambda_3}\left(\{\alpha_i\},\{\boldsymbol{p}_i+\boldsymbol{l}_i\};\boldsymbol{P}'\right)\right]^*$$

Baryon form-factor: $F(l_1, l_2, l_3)$ depends on overall momentum transfers l_i to the quark lines

2 gluon baryon impact factor

Decomposition of amplitude into gauge invariant pieces — with one spectator quark

Structure of $D_{2;0}^{\{1,2\}}$ resembles color dipole, but with half of the coupling

$$D_{2;0}^{\{1,2\}}(\boldsymbol{k}_1,\boldsymbol{k}_2) = \frac{-g^2}{12} \left[F(\boldsymbol{k},0,\boldsymbol{0}) + F(0,\boldsymbol{k},\boldsymbol{0}) - F(\boldsymbol{k}_1,\boldsymbol{k}_2,\boldsymbol{0}) - F(\boldsymbol{k}_2,\boldsymbol{k}_1,\boldsymbol{0}) \right]$$

Full impact factor: the sum over quasi-dipoles

$$B_{2;0}(\boldsymbol{k}_1, \boldsymbol{k}_2) = \delta^{a_1 a_2} \left[D_{2;0}^{\{1,2\}}(\boldsymbol{k}_1, \boldsymbol{k}_2) + D_{2;0}^{\{1,3\}}(\boldsymbol{k}_1, \boldsymbol{k}_2) + D_{2;0}^{\{2,3\}}(\boldsymbol{k}_1, \boldsymbol{k}_2) \right]$$

3-gluon *C*-even baryon impact factor

3-gluon C-even impact factor may be decomposed

$$B_{3;0} = D_{3;0}^{\{1,2\}} + D_{3;0}^{\{1,3\}} + D_{3;0}^{\{2,3\}}$$

and $D_{3;0}^{\{i,j\}}$ have the color/momentum structure known from the photon/dipole

$$D_{3;0}^{\{i,j\}}(1,2,3) = \frac{1}{2} g f^{a_1 a_2 a_3} \left[D_{2;0}^{\{i,j\}}(12,3) - D_{2;0}^{\{i,j\}}(13,2) + D_{2;0}^{\{i,j\}}(23,1) \right]$$

Suggestive of independent Reggeization of dipole-like components $D_{3;0}^{\{i,j\}}$

3-gluon *C***-odd baryon impact factor**

All topologies contribute:

C-odd baryon impact factor

$$ilde{B}_{3;0}({m k}_1,{m k}_2,{m k}_3) = d^{a_1a_2a_3} E_{3;0}({m k}_1,{m k}_2,{m k}_3)$$

Impact factor

$$E_{3;0}(m{k}_1,m{k}_2,m{k}_3) \;=\; rac{g^3}{24} \sum_{\sigma} \left[2F^{\sigma}(m{k}_1,m{k}_2,m{k}_3) - \sum_{i=1}^3 F^{\sigma}(m{k}_i,m{k}-m{k}_i,0) + F^{\sigma}(m{k},0,0)
ight]$$

is Bose symmetric: $E_{3;0}\left(\boldsymbol{k}_{\sigma(1)},\boldsymbol{k}_{\sigma(2)},\boldsymbol{k}_{\sigma(3)}\right) = E_{3;0}(\boldsymbol{k}_1,\boldsymbol{k}_2,\boldsymbol{k}_3)$ for any σ

and gauge invariant: $E_{3;0}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3) = 0$ for any $\boldsymbol{k}_j \to 0$.

4-gluon C-even baryon impact factor

Dipolar terms $D_{4;0}$ found again in C-even impact factor

$$B_{4;0} = D_{4;0}^{\{1,2\}} + D_{4;0}^{\{1,3\}} + D_{4;0}^{\{2,3\}} + Q_{4;0}$$

'Dipole-like' components again follow the pattern found for the photon scattering

Reggeizing terms:

New structure found in baryon impact factor

All topologies contribute:

$$Q_{4,0}(1,2,3,4) = \frac{1}{2}g \left[d^{a_1a_2b} d^{ba_3a_4} - \frac{1}{3}\delta^{a_1a_2}\delta^{a_3a_4} \right] \left[E_{3,0}(12,3,4) + E_{3,0}(34,1,2) \right] + \frac{1}{2}g \left[d^{a_1a_3b} d^{ba_2a_4} - \frac{1}{3}\delta^{a_1a_3}\delta^{a_2a_4} \right] \left[E_{3,0}(13,2,4) + E_{3,0}(24,1,3) \right] + \frac{1}{2}g \left[d^{a_1a_4b} d^{ba_2a_3} - \frac{1}{3}\delta^{a_1a_4}\delta^{a_2a_3} \right] \left[E_{3,0}(14,2,3) + E_{3,0}(23,1,4) \right]$$

Bose symmetry and gauge invariance: $Q_{4;0}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3, \boldsymbol{k}_4) = 0$ for any $\boldsymbol{k}_j \to 0$

4-gluon C-odd impact factor

Impact factor suggestive of Reggeizing form

$$\begin{split} \tilde{B}_{4;0}(1,2,3,4) &= f^{a_1a_2b} d^{ba_3a_4} E_{3;0}(12,3,4) + f^{a_1a_3b} d^{ba_2a_4} E_{3;0}(13,2,4) + \\ &+ f^{a_1a_4b} d^{ba_2a_3} E_{3;0}(14,2,3) + f^{a_2a_3b} d^{ba_1a_4} E_{3;0}(23,1,4) + \\ &+ f^{a_2a_4b} d^{ba_1a_3} E_{3;0}(24,1,3) + f^{a_3a_4b} d^{ba_1a_2} E_{3;0}(34,1,2) \end{split}$$

Small-x evolution of multiple discontinuities

Ingredients of EGGLA formalism [I. Balitsky, V. Fadin, E. Kuraev, L. Lipatov; J. Bartels; J. Kwieciński, M. Praszałowicz, M. Wüsthoff, C. Ewerz]:

Reggeized gluon trajectory $\beta(\mathbf{k})$ and $2 \rightarrow 2$ BFKL interaction kernel, $2 \rightarrow n$ transition kernels

Bootstrap in gluon trajectory and 3-Pomeron vertex

Solutions: Odderon

 $\tilde{B}_3 = E_3$ — solution of BKP equation with initial condition $E_{3,0}$ (Janik–Wosiek solution)

$$\left(\omega - \sum_i eta({m k}_i)
ight) \; E_3 \; = \; E_{3;0} \; + \; \sum_{(r,s)} \; K_{2
ightarrow 2} \; \otimes \; E_3$$

4 gluons: solution saturated by Reggeizing contribution

Solutions: Pomeron

Two-gluon impact factors $D_2^{\{i,j\}}$ are solutions of BFKL equation with initial conditions $D_{2;0}^{\{i,j\}}$

$$\left(\omega - \sum_{i=1}^{2} \beta(\boldsymbol{k}_{i})\right) D_{2}^{\{i,j\}} = D_{2;0}^{\{i,j\}} + K_{2\to 2} \otimes D_{2}^{\{i,j\}}$$

For three gluons — impact factor is also superposition of evolving dipolar pieces:

$$B_3 = D_3^{\{1,2\}} + D_3^{\{1,3\}} + D_3^{\{2,3\}}$$

and solutions for $D_3^{\{i,j\}}$ have Reggeizing form

$$D_{3}^{\{i,j\}}(1,2,3) = \frac{1}{2}g f^{a_{1}a_{2}a_{3}} \left[D_{2}^{\{i,j\}}(12,3) - D_{2}^{\{i,j\}}(13,2) + D_{2}^{\{i,j\}}(23,1) \right]$$

For 3 gluons — evolved baryon is a superposition of three possible BFKL solutions

Solutions for Pomeron: four gluons

Decomposition of 4-gluon evolving baryon impact factor B_4

$$B_4 = \underbrace{D_4^{\{1,2\}} + D_4^{\{1,3\}} + D_4^{\{2,3\}}}_{\text{dipole-like}} + Q_4$$

Dipole-like pieces $D_4^{\{i,j\}}$ similar to photon case: sum of Reggeizing and irreducible contributions

$$D_4^{\{i,j\}} = D_4^{\{i,j\};R} + D_4^{\{i,j\};I}$$

Reggeizing contribution preserves the color-momentum structure of the bare impact factor while...

Irreducible contribution

$$D_4^{\{i,j\}\,;I} = V_{2 \to 4} \otimes D_2$$

defines $2 \rightarrow 4$ transition vertex $V_{2\rightarrow 4}$ (triple Pomeron vertex)

Solutions for Pomeron: four gluons — new piece

Contributions from the dipole-like pieces of are saturated by $D_4^{\{i,j\}}$

Remaining part of linear integral equations \longrightarrow BKP evolution equation for Q_4

$$\left(\omega - \sum_{i} \beta(\boldsymbol{k}_{i})\right) \underbrace{\boldsymbol{Q}_{4}}_{|||||} = \underbrace{\boldsymbol{Q}_{4,0}}_{|||||} + \sum \underbrace{\boldsymbol{Q}_{4}}_{|||||}$$

 Q_4 is decomposed into Reggezing part Q_4^R and irreducible part Q_4^I :

$$Q_4 \hspace{0.1in} = \hspace{0.1in} Q_4^R \hspace{0.1in} + \hspace{0.1in} Q_4^I$$

The Reggezing piece Q_4^R preserves the structure of $Q_{4;0}$, but $E_{3;0} \longrightarrow E_3$

$$Q_{4}^{R}(1,2,3,4) = \frac{1}{2}g \left[d^{a_{1}a_{2}b} d^{ba_{3}a_{4}} - \frac{1}{3}\delta^{a_{1}a_{2}}\delta^{a_{3}a_{4}} \right] \left[E_{3}(12,3,4) + E_{3}(34,1,2) \right] + \frac{1}{2}g \left[d^{a_{1}a_{3}b} d^{ba_{2}a_{4}} - \frac{1}{3}\delta^{a_{1}a_{3}}\delta^{a_{2}a_{4}} \right] \left[E_{3}(13,2,4) + E_{3}(24,1,3) \right] + \frac{1}{2}g \left[d^{a_{1}a_{4}b} d^{ba_{2}a_{3}} - \frac{1}{3}\delta^{a_{1}a_{4}}\delta^{a_{2}a_{3}} \right] \left[E_{3}(14,2,3) + E_{3}(23,1,4) \right]$$

Presence of C-even d-Reggeon \longrightarrow Similar to Bartels-Lipatov-Vacca Odderon solution

Transition vertices

т

Irreducible part of Q_4 defines new $3 \rightarrow 4$ vertex:

$$Q_4^I(1,2,3,4) = (W \otimes E_3)(1,2,3,4)$$

2 triple Pomeron vertices in baryon evolution:

W: transition from (dff) BKP Pomeron state Q into (ffff) BKP Pomeron state V: transition from (ff) BFKL Pomeron state D into (ffff) BKP Pomeron state

Similar vertex W was found in analysis of jet production [Bartels, Salvadore, Vacca]

Interpretation

Baryon small x evolution driven by a Hamiltonian \mathcal{H} in the t-channel

$$rac{\partial ig| \mathcal{B} ig>}{\partial y} \;=\; \mathcal{H} ig| \mathcal{B} ig>$$

 \longrightarrow Basic quanta: Reggeized gluons with odd $|f\rangle$ and even signatures $|d\rangle$.

→ Physical states: multi-Reggeon states in color singlet, gauge invariant, Bose symmetric
 → Number of Reggeons is not conserved

Initial condition decomposition

$$|\mathcal{B}\rangle = \overbrace{|\mathcal{D}_{2;0}^{\{1,2\}}\rangle + |\mathcal{D}_{2;0}^{\{1,3\}}\rangle + |\mathcal{D}_{2;0}^{\{2,3\}}\rangle + |\mathcal{Q}_{4;0}\rangle}^{C \text{ odd}} + \overbrace{|\mathcal{E}_{3;0}\rangle}^{C \text{ odd}}$$

indicates that only single Pomeron (BFKL or BKP) couples to proton (valence d.o.f.)

$$\mathcal{H} = \mathcal{H}_{2 \to 2}^{BFKL} + \mathcal{H}_{3 \to 3}^{BKP} + \mathcal{H}_{4 \to 4}^{BKP} + \mathcal{H}_{2 \to 4}^{\operatorname{vertex} V} + \mathcal{H}_{3 \to 4}^{\operatorname{vertex} W} + \dots$$

Summary

- A model for a proton light cone wave function was constructed: dependent on quark momenta (longitudinal and transverse) and helicities
- Proton (valence) couples to BFKL Pomerons, 3-Reggeon BKP Odderon, and 3-Reggeon BKP Pomeron. No indications of direct two Pomeron coupling

Proton resembles superposition of color 3 dipoles... but there is an extra component

- New triple Pomeron vertex: BKP Pomeron \longrightarrow 2 BFKL Pomerons
- Unitarisation of scattering amplitudes on valence proton:
 Pomeron loops not fans!
- Phenomenological applications?

BACKUP

Strategy

Basic objects: multiple discontinuities

- \longrightarrow May be constructed using $M \rightarrow N$ scattering amplitudes
- \longrightarrow Obey small x integral evolution equations
- \longrightarrow Contain information about full amplitudes

Bootstrap for gluon trajectory

- \longrightarrow Reduction of discontinuities to *t*-channel physical states
- Bose symmetric, gauge invariant BKP states (e.g. BFKL)
- \longrightarrow Isolation of irreducible pieces
- \longrightarrow Gauge invariant transition vertices e.g. 3–Pomeron vertex

Regge factorisation

 \longrightarrow Physical amplitudes may be built from the gauge invariant states and transition vertices between them

Baryon wave function: gluon coupling

In high energy limit all diagrams

$$p + \overbrace{g + g + \dots + g}^{n \text{ gluons}} \longrightarrow u u d$$

with any n give universal amplitudes with quark momenta p_i evaluated at the vertex

$$\begin{split} \Theta_{\lambda}^{(\lambda_{1},\lambda_{2})\lambda}(\{\alpha_{i}\},\{\pmb{p}_{i}\};\pmb{P}) &= \lambda \mathcal{N} \frac{2\sqrt{\alpha_{1}\alpha_{2}\alpha_{3}}}{M^{2}+\pmb{P}^{2}-\frac{p_{1}^{2}}{\alpha_{1}}-\frac{p_{2}^{2}}{\alpha_{2}}-\frac{p_{3}^{2}}{\alpha_{3}}} \delta^{(2)}\left(\sum \pmb{p}_{i}-\pmb{P}\right) \times \\ \delta_{-\lambda_{1},\lambda_{2}} \left\{ \delta_{\lambda_{1},\lambda}\left(\frac{p_{2}}{\alpha_{2}}-P\right)\left(\frac{p_{1}}{\alpha_{1}}-\frac{p_{3}}{\alpha_{3}}\right)^{*}+\delta_{\lambda_{2},\lambda}\left(\frac{p_{1}}{\alpha_{1}}-P\right)\left(\frac{p_{2}}{\alpha_{2}}-\frac{p_{3}}{\alpha_{3}}\right)^{*}\right\}^{C(\lambda)} \\ \Theta_{\lambda}^{(\lambda_{1},\lambda_{2})-\lambda}(\{\alpha_{i}\},\{\pmb{p}_{i}\};\pmb{P}) &= \mathcal{N} \frac{2M\sqrt{\alpha_{1}\alpha_{2}\alpha_{3}}}{M^{2}+\pmb{P}^{2}-\frac{p_{1}^{2}}{\alpha_{1}}-\frac{p_{2}^{2}}{\alpha_{2}}-\frac{p_{3}^{2}}{\alpha_{3}}} \delta^{(2)}\left(\sum \pmb{p}_{i}-\pmb{P}\right) \times \\ \delta_{-\lambda_{1},\lambda_{2}} \left\{ \delta_{\lambda_{1},\lambda}\left(\frac{p_{3}}{\alpha_{3}}-\frac{p_{2}}{\alpha_{2}}\right)+\delta_{\lambda_{2},\lambda}\left(\frac{p_{3}}{\alpha_{3}}-\frac{p_{1}}{\alpha_{1}}\right) \right\}^{C(\lambda)} \end{split}$$

Baryon wave function in infinite momentum frame

Point-like baryon-quarks vertex is unrealistic — baryon is a bound state

 \longrightarrow Severe ultraviolet divergences, on-shell poles in energy denominators

 \longrightarrow Need to perform Borel transform (QCD sum rules)

$$\mathcal{B}f(s) = \lim_{n \to \infty} \frac{s^{n+1}}{n!} \left(-\frac{d}{ds}\right)^n f(s), \qquad s \to \infty, \quad s/n \to M^2$$

We apply two independent Borel transforms w.r.t. virtualities of incoming and outgoing baryon

$$\mathcal{B}' \mathcal{B} f(P^2, P'^2)$$
 with $f(P^2, P'^2) \sim \frac{1}{P^2 + P^2 - M_X^2} \frac{1}{P'^2 + P'^2 - M_X'^2}$

[Balitsky, Lipatov]

$$\frac{1}{P^2 + \boldsymbol{P}^2 - \frac{\boldsymbol{p}_1^2}{\alpha_1} - \frac{\boldsymbol{p}_2^2}{\alpha_2} - \frac{\boldsymbol{p}_3^2}{\alpha_3}} \longrightarrow \exp\left[-\left(\frac{\boldsymbol{p}_1^2}{\alpha_1} + \frac{\boldsymbol{p}_2^2}{\alpha_2} + \frac{\boldsymbol{p}_3^2}{\alpha_3} - \boldsymbol{P}^2\right) / M^2\right]$$

Baryon scattering in position space

$$\mathcal{B} = \sum_{\text{diagrams}} \int [d^2 \boldsymbol{r}_i] \left[\tilde{\Psi}^{\lambda_i} (\{\boldsymbol{r}_i\}) \right] \left[\mathcal{C}(\text{diagram}) \prod_j \exp\left(-i\boldsymbol{l}_j \cdot \boldsymbol{r}_j\right) \right] \left[\tilde{\Psi}^{\lambda_i}_{\lambda} (\{\boldsymbol{r}_i\}) \right]^*$$

$$\mathcal{C}(\text{diagram}) \sim \varepsilon^{\kappa_1 \kappa_2 \kappa_3} \left[t^{a_l} t^{a_{l-1}} \dots t^{a_1} \right]_{\kappa_1' \kappa_1} \left[t^{bm} t^{bm-1} \dots t^{b_1} \right]_{\kappa_2' \kappa_2} \left[t^{cn} t^{c_n-1} \dots t^{c_1} \right]_{\kappa_3' \kappa_3} \varepsilon^{\kappa_1' \kappa_2' \kappa_3'}$$

Wilson lines

$$W(oldsymbol{r}) \;=\; \mathcal{P}\; \exp\left(ig\int dr^{\mu}A_{\mu}
ight)$$

Color dipole scattering:

$$S(\boldsymbol{r}_1, \boldsymbol{r}_2) ~\sim~ \left\langle ~ [W(\boldsymbol{r}_1)]_{\kappa\kappa'} ~ [W(\boldsymbol{r}_2)]^*_{\kappa'\kappa} ~
ight
angle$$

Baryon scattering

$$S(\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3) \sim \left\langle \varepsilon^{\kappa_1 \kappa_2 \kappa_3} \left[W(\boldsymbol{r}_1) \right]^*_{\kappa_1 \kappa_1'} \left[W(\boldsymbol{r}_2) \right]^*_{\kappa_2 \kappa_2'} \left[W(\boldsymbol{r}_3)^* \right]_{\kappa_3 \kappa_3'} \varepsilon^{\kappa_1' \kappa_2' \kappa_3'} \right\rangle$$

Dipole vs baryon scattering

