UV Surprises in Supergravity Theories

July 18, 2013
CERN Theory Colloquium
Zvi Bern, UCLA

Based on papers with John Joseph Carrasco, Scott Davies, Tristan Dennen, Lance Dixon, Yu-tin Huang, Henrik Johansson Josh Nohle and Radu Roiban.

Outline

- 1) Remarkable progress in scattering amplitudes.
- 2) A hidden structure in gauge and gravity amplitudes.
 - a duality between color and kinematics.
 - gravity as a double copy of gauge theory.
- 3) Application: Surprises in UV properties of point-like theories of quantum gravity.

Some new results from past year:

- 1) Clear examples where standard symmetry arguments fail to predict (and postdict) UV finiteness.
- 2) uncovered precise reason behind surprising UV cancellations in supergravity, at least in a 2 loop D = 5 case.

Constructing Multiloop Amplitudes

We do have powerful tools for complete calculations including nonplanar contributions and for discovering new structures:

• Unitarity Method.

ZB, Dixon, Dunbar, Kosower ZB, Carrasco, Johansson, Kosower

- On-shell recursion.

 Britto, Cachazo Feng and Witten; Arkani-Hamed et al
- Duality between color and kinematics.

 ZB. Carrasco and Johansson
- Advanced loop integration technology.

Chetyrkin, Kataev and Tkachov; A.V. Smirnov; V. A. Smirnov, Vladimirov; Marcus, Sagnotti; Cazkon; etc

In this talk we will explain how the duality between color and kinematics allows us to to probe deeply the UV properties of supergravity theories.

ATLAS Comparison Against NLO QCD

ZB, Dixon, Febres Cordero, Ita, Kosower, Maitre, Ozeren [BlackHat collaboration]

Z+1, 2, 3, 4 jets inclusive

Unitarity approach is used to carry out state of the art NLO QCD computations of multijet processes at the LHC.

A triumph for unitarity method. Beyond Feynman diagrams.

- Even W + 5 jets in NLO QCD has also been done. BlackHat (2013)
- Serious advance in our ability to do NLO QCD calculations.

Review: The structure of gravity scattering amplitudes

Gravity vs Gauge Theory

Compare to Yang-Mills Lagrangian on which QCD is based

$$L_{\text{YM}} = \frac{1}{g^2} F^2$$
 Only three and four point interactions

Gravity seems so much more complicated than gauge theory.

Three Vertices

Standard Feynman diagram approach.

a b c a b c a b c

Three-gluon vertex:

$$V_{3\mu\nu\sigma}^{abc} = -gf^{abc}(\eta_{\mu\nu}(k_1 - k_2)_{\rho} + \eta_{\nu\rho}(k_1 - k_2)_{\mu} + \eta_{\rho\mu}(k_1 - k_2)_{\nu})$$

Three-graviton vertex:

$$k_i^2 = E_i^2 - \vec{k}_i^2 \neq 0$$

$$G_{3\mu\alpha,\nu\beta,\sigma\gamma}(k_{1},k_{2},k_{3}) =
sym[-\frac{1}{2}P_{3}(k_{1} \cdot k_{2}\eta_{\mu\alpha}\eta_{\nu\beta}\eta_{\sigma\gamma}) - \frac{1}{2}P_{6}(k_{1\nu}k_{1\beta}\eta_{\mu\alpha}\eta_{\sigma\gamma}) + \frac{1}{2}P_{3}(k_{1} \cdot k_{2}\eta_{\mu\nu}\eta_{\alpha\beta}\eta_{\sigma\gamma})
+ P_{6}(k_{1} \cdot k_{2}\eta_{\mu\alpha}\eta_{\nu\sigma}\eta_{\beta\gamma}) + 2P_{3}(k_{1\nu}k_{1\gamma}\eta_{\mu\alpha}\eta_{\beta\sigma}) - P_{3}(k_{1\beta}k_{2\mu}\eta_{\alpha\nu}\eta_{\sigma\gamma})
+ P_{3}(k_{1\sigma}k_{2\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + P_{6}(k_{1\sigma}k_{1\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + 2P_{6}(k_{1\nu}k_{2\gamma}\eta_{\beta\mu}\eta_{\alpha\sigma})
+ 2P_{3}(k_{1\nu}k_{2\mu}\eta_{\beta\sigma}\eta_{\gamma\alpha}) - 2P_{3}(k_{1} \cdot k_{2}\eta_{\alpha\nu}\eta_{\beta\sigma}\eta_{\gamma\mu})]$$

About 100 terms in three vertex

Naïve conclusion: Gravity is a nasty mess.

Simplicity of Gravity Amplitudes

On-shell viewpoint clarifies the structure.

On-shell three vertices contains all information:

$$k_i^2 = 0$$

gauge theory:
$$\frac{2}{\mu} \frac{b}{\rho} = -gf^{abc}(\eta_{\mu\nu}(k_1 - k_2)_{\rho} + \text{cyclic})$$

$$\frac{2}{\nu}$$

$$\frac{2}{\nu}$$

$$\frac{2}{\nu}$$

$$\frac{\gamma}{\rho}$$

gravity:
$$i\kappa(\eta_{\mu\nu}(k_1-k_2)_{\rho} + \text{cyclic})$$

$$\times (\eta_{\alpha\beta}(k_1-k_2)_{\gamma} + \text{cyclic})$$

$$\times (\eta_{\alpha\beta}(k_1-k_2)_{\gamma} + \text{cyclic})$$

$$\times (\eta_{\alpha\beta}(k_1-k_2)_{\gamma} + \text{cyclic})$$

$$\times (\eta_{\alpha\beta}(k_1-k_2)_{\gamma} + \text{cyclic})$$

- Using modern on-shell methods, any gravity scattering amplitude constructible solely from *on-shell* 3 vertices. BCFW recursion for trees, BDDK unitarity method for loops.
- Vertices simple! Higher-point vertices irrelevant!

Duality Between Color and Kinematics

ZB, Carrasco, Johansson (BCJ)

coupling constant
$$-gf^{abc}(\eta_{\mu\nu}(k_1-k_2)_{\rho}+\text{cyclic})$$

momentum dependent

Color factors based on a Lie algebra: $[T^a, T^b] = if^{abc}T^c$

Jacobi Identity
$$f^{a_1 a_2 b} f^{b a_4 a_3} + f^{a_4 a_2 b} f^{b a_3 a_1} + f^{a_4 a_1 b} f^{b a_2 a_3} = 0$$

$$\mathcal{A}_4^{\text{tree}} = g^2 \left(\frac{n_s c_s}{s} + \frac{n_t c_t}{t} + \frac{n_u c_u}{u} \right) \quad \stackrel{s = (k_1 + k_2)^2}{t = (k_1 + k_4)^2} \quad u = (k_1 + k_3)^2$$

Use 1 = s/s = t/t = u/uto assign 4-point diagram to others.

$$s = (k_1 + k_2)^2$$

$$t = (k_1 + k_4)^2$$

$$u = (k_1 + k_3)^2$$

Color factors satisfy Jacobi identity:

Numerator factors satisfy similar identity:

$$c_u = c_s - c_t$$
$$n_u = n_s - n_t$$

Color and kinematics satisfy the same identity

Duality Between Color and Kinematics

Consider five-point tree amplitude:

ZB, Carrasco, Johansson (BCJ)

$$c_1 \equiv f^{a_3 a_4 b} f^{b a_5 c} f^{c a_1 a_2}, \quad c_2 \equiv f^{a_3 a_4 b} f^{b a_2 c} f^{c a_1 a_5}, \quad c_3 \equiv f^{a_3 a_4 b} f^{b a_1 c} f^{c a_2 a_5}$$

 $n_i \sim k_4 \cdot k_5 \, k_2 \cdot \varepsilon_1 \, \varepsilon_2 \cdot \varepsilon_3 \, \varepsilon_4 \cdot \varepsilon_5 + \cdots$

$$c_1 - c_2 + c_3 = 0 \Leftrightarrow n_1 - n_2 + n_3 = 0$$

Claim: At n-points we can always find a rearrangement so color and kinematics satisfy the same algebraic constraint equations.

Nontrivial constraints on amplitudes in field theory and string theory

BCJ, Bjerrum-Bohr, Feng, Damgaard, Vanhove, ; Mafra, Stieberger, Schlotterer; Cachazo; Tye and Zhang; Feng, Huang, Jia; Chen, Du, Feng; Du, Feng, Fu; Naculich, Nastase, Schnitzer

BCJ

Gravity and Gauge Theory

kinematic numerator

color factor

gauge theory:
$$\frac{1}{g^{n-2}}\mathcal{A}_n^{\text{tree}}(1,2,3,\ldots,n) = \sum_i \frac{n_i \, c_i}{\prod_{\alpha_i} \, p_{\alpha_i}^2}$$
 sum over diagrams with only 3 vertices

$$c_i \sim f^{a_1 a_2 b_1} f^{b_1 b_2 a_5} f^{b_2 a_4 a_5}$$

Assume we have:

$$c_1+c_2+c_3=0 \Leftrightarrow n_1+n_2+n_3=0$$

Then: $c_i \Rightarrow \tilde{n}_i$ kinematic numerator of second gauge theory

Proof: ZB, Dennen, Huang, Kiermaier

gravity:
$$-i\left(\frac{2}{\kappa}\right)^{(n-2)}\mathcal{M}_n^{\mathrm{tree}}(1,2,\ldots,n) = \sum_i \frac{n_i \, \tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2} \quad \text{Encodes KLT tree relations}$$

Gravity numerators are a double copy of gauge-theory ones.

This works for ordinary Einstein gravity and susy versions.

Cries out for a unified description of the sort given by string theory!

Gravity From Gauge Theory

BCJ

$$-i\left(\frac{2}{\kappa}\right)^{(n-2)}\mathcal{M}_n^{\text{tree}}(1,2,\ldots,n) = \sum_i \frac{n_i\,\tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2}$$

$$n$$
 \tilde{n}
 $N = 8 \text{ sugra:} \quad (N = 4 \text{ sYM}) \times (N = 4 \text{ sYM})$
 $N = 4 \text{ sugra:} \quad (N = 4 \text{ sYM}) \times (N = 0 \text{ sYM})$
 $N = 0 \text{ sugra:} \quad (N = 0 \text{ sYM}) \times (N = 0 \text{ sYM})$

N = 0 sugra: graviton + antisym tensor + dilaton

Spectrum controlled by simple tensor product of YM theories. Recent papers show more sophisticated lower susy cases.

Carrasco, Chiodaroli, Günaydin and Roiban (2012); Borsten, Duff, Hughes and Nagy (2013)

Loop-Level Conjecture

Loop-level is identical to tree-level one except for symmetry factors and loop integration.

Double copy works if numerator satisfies duality.

BCJ

Gravity integrands are free!

Ideas generalize to loops:

If you have a set of duality satisfying numerators. To get:

> gauge theory — gravity theory simply take

color factor \rightarrow kinematic numerator

$$c_k \longrightarrow n_k$$

Gravity loop integrands are trivial to obtain!

BCJ

Generalized Gauge Invariance

ZB, Dennen, Huang, Kiermaier Tye and Zhang

gauge theory

theory
$$\frac{(-i)^L}{g^{n-2+2L}}\mathcal{A}_n^{\mathrm{loop}} = \sum_j \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_j} \frac{n_j c_j}{\prod_{\alpha_j} p_{\alpha_j}^2}$$

$$\underset{j}{\text{sum is over}} \int \frac{d^{DL} p}{(2\pi)^{DL}} \frac{1}{S_j} \frac{\Delta_j c_j}{\prod_{\alpha_j} p_{\alpha_j}^2} = 0$$

$$n_i \to n_i + \Delta_i \qquad (c_{\alpha} + c_{\beta} + c_{\gamma}) f(p_i) = 0$$

Above is just a definition of generalized gauge invariance

gravity
$$\frac{(-i)^{L+1}}{(\kappa/2)^{n-2+2L}} \mathcal{M}_n^{\text{loop}} = \sum_j \int \prod_{l=1}^L \frac{d^D p_l}{(2\pi)^D} \frac{1}{S_j} \frac{n_j \tilde{n}_j}{\prod_{\alpha_j} p_{\alpha_j}^2}$$
$$n_i \to n_i + \Delta_i \qquad \sum_j \int \frac{d^{DL} p}{(2\pi)^{DL}} \frac{1}{S_j} \frac{\Delta_j \tilde{n}_j}{\prod_{\alpha_j} p_{\alpha_j}^2} = 0$$

- Gravity inherits generalized gauge invariance from gauge theory!
- Double copy works even if only one of the two copies has duality manifest!
- Very useful for $N \ge 4$ supergravity amplitudes.

Application: UV Properties of Supergravity

Review:Power Counting at High Loop Orders

Gravity:
$$\int \prod_{i=1}^{L} \frac{d^D p_i}{(2\pi)^D} \frac{(\kappa p_j^{\mu} p_j^{\nu}) \cdots}{\text{propagators}}$$

Gauge theory:
$$\int \prod_{i=1}^{L} \frac{d^{D} p_{i}}{(2\pi)^{D}} \frac{(g \, p_{j}^{\nu}) \cdots}{\text{propagators}}$$

Extra powers of loop momenta in numerator means integrals are badly behaved in the UV.

Non-renormalizable by power counting.

Reasons to focus on extended supegravity, especially N=8.

- With more susy expect better UV properties.
- High symmetry implies technical simplicity.

Finiteness of N = 8 Supergravity?

If N=8 supergravity is finite it would imply a new symmetry or non-trivial dynamical mechanism. No known symmetry can render a D=4 gravity theory finite. The discovery of such a mechanism would have a fundamental impact on our understanding of gravity.

Note: Perturbative finiteness is not the only issue for consistent gravity: Nonperturbative completions? High energy behavior of theory? Realistic models?

Consensus opinion for the late 1970's and early 1980's: All supergravities would diverge by three loops and therefore not viable as fundamental theories.

Feynman Diagrams for Gravity

SUPPOSE WE WANT TO CHECK IF CONSENSUS OPINION IS TRUE

- Calculations to settle this seemed utterly hopeless!
- Seemed destined for dustbin of undecidable questions.

Complete Three-Loop Result

Analysis of unitarity cuts shows highly nontrivial all-loop cancellations. ZB, Dixon and Roiban (2006); ZB, Carrasco, Forde, Ita, Johansson (2007) To test completeness of cancellations, we decided to directly calculate potential three-loop divergence.

ZB, Carrasco, Dixon, Johansson, Kosower, Roiban (2007)

Three loops is not only ultraviolet finite it is "superfinite"— finite for D < 6.

It is very finite!

Obtained via on-shell unitarity method.

Four-Loop Amplitude Construction

ZB, Carrasco, Dixon, Johansson, Roiban (2009)

Get 50 distinct diagrams or integrals (ones with two- or three-point subdiagrams not needed).

UV finite for D < 11/2It's very finite!

Originally took more than a year.

Double copy discovered by doing this calculation!

Today with the double copy we can reproduce it in a few days!

Recent Status of N = 8 **Divergences**

Consensus that in N=8 supergravity trouble starts at 5 loops and by 7 loops we have valid UV counterterm in D=4 under all known symmetries (suggesting divergences).

Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove; Green and Bjornsson; Bossard, Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon; Elvang and Kiermaier; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger

For N = 8 sugra in D = 4:

- All counterterms ruled out until 7 loops!
- But D^8R^4 apparently available at 7 loops (1/8 BPS) under all known symmetries. (No known nonrenormalization theorem)

Bossard, Howe, Stelle and Vanhove

Based on this a reasonable person would conclude that N=8 supergravity almost certainly diverges at 7 loops in D=4.

N = 8 Sugra 5 Loop Calculation

ZB, Carrasco, Dixon, Johannson, Roiban

~500 such diagrams with ~1000s terms each

Being reasonable and being right are not the same

Place your bets:

- At 5 loops in D = 24/5 does N = 8 supergravity diverge?
- At 7 loops in D = 4 does

N = 8 supergravity diverge?

 D^8R^4 counterterms

5 loops

Kelly Stelle: English wine "It will diverge" Zvi Bern:
California wine
"It won't diverge"

New Four-Loop N = 8 Surprise

ZB, Carrasco, Dixon, Johansson, Roiban (2012)

Critical dimension D = 11/2. **Express UV divergences** in terms of vacuum like integrals.

doubled propagator

$$\mathcal{A}_{4}^{(4)}(1,2,3,4)\Big|_{\text{pole}}^{SU(N_c)} = -6g^{10} \,\mathcal{K} \, N_c^2 \Big(N_c^2 \, V_1 + 12 \, (V_1 + 2 \, V_2 + V_8) \\ \times \Big(s \, (\, \text{Tr}_{1324} + \, \text{Tr}_{1423}) + t \, (\, \text{Tr}_{1243} + \, \text{Tr}_{1342}) + u \, (\, \text{Tr}_{1234} + \, \text{Tr}_{1432}) \Big) \\ \text{same} \\ \text{divergence}$$

gravity

$$\mathcal{M}_{4}^{(4)}\Big|_{\text{pole}} = -\frac{23}{8} \left(\frac{\kappa}{2}\right)^{10} stu(s^2 + t^2 + u^2)^2 M_4^{\text{tree}} \left[V_1 + 2V_2 + V_8\right]$$

- Gravity UV divergence is directly proportional to subleading color single-trace divergence of N = 4 super-Yang-Mills theory.
- Same happens at 1-3 loops.

Calculation of N = 4 sYM 5 Loop Amplitude

ZB, Carrasco, Johansson, Roiban (2012)

Key step for N = 8 supergravity is construction of complete 5 loop integrand of N = 4 sYM theory.

416 such diagrams with ~100s terms each

diagram numerators

$$N_1 = s^4,$$
 $N_{12} = 2s^3k_3 \cdot l_5,$
 $N_{284} = 2s^2((l_{10} \cdot l_{20})^2 + (l_{13} \cdot l_{18})^2)$

We are trying to figure out a BCJ form. If we can get it we should have supergravity finished soon!

(Unclear how long it will take to get this new form.)

UV divergences N = 4 sYM 5 Loop Amplitude

ZB, Carrasco, Johansson, Roiban (2012)

Critical dimension where divergences first occur: D = 26/5

- Expand in small external momenta.
- Apply integral consistency equations.
- Find all integral identities.
- Get astonishingly simple formula for UV

$$A_4^{(5)}\big|_{\rm div} = \frac{144}{5} g^{12} \mathcal{K} N_c^3 \Big(N_c^2 V^{(a)} + 12 (V^{(a)} + 2V^{(b)} + V^{(c)}) \Big) \\ \times \Big(s({\rm Tr}_{1234} + {\rm Tr}_{1423}) + t({\rm Tr}_{1243} + {\rm Tr}_{1342}) + u({\rm Tr}_{1234} + {\rm Tr}_{1432}) \Big)$$

Use FIESTA:
$$V^{(a)} = \frac{0.331K}{\epsilon}$$
, $V^{(b)} = \frac{0.310K}{\epsilon}$, $V^{(c)} = \frac{0.291K}{\epsilon}$

\ color trace

- Proves known finiteness bound is saturated.
- Note amazing similarity to four loops and N=8 sugra.

Examples of Magical Cancellations?

Fine, but do we have any examples where a divergence vanishes but the known symmetries imply valid counterterms?

Yes!

Two examples in half-maximal supergravity:

- D = 5 at 2 loops.
- D = 4 at 3 loops.

N = 4 Supergravity in D = 4

• N = 4 sugra at 3 loops ideal D = 4 test case to study.

Cremmer, Scherk, Ferrara (1978)

• BCJ representation exists for N = 4 sYM 3-loop 4-pt amplitude

ZB, Carrasco, Johansson (2010)

Consensus had it that a valid R^4 counterterm exists for this theory in D=4.

Bossard, Howe, Stelle; Bossard, Howe, Stelle, Vanhove

Is the consensus opinion true?

Three-Loop Construction

ZB, Davies, Dennen, Huang

$$N = 4 \text{ sugra}$$
: $(N = 4 \text{ sYM}) \times (N = 0 \text{ YM})$

Ultraviolet divergences are obtained by series expanding small external momentum (or large loop momentum) and introducing a mass regulator for IR divergences. Subdivergences must be subtracted.

Dealing With Subdivergences

Vladymirov (1980); Marcus, Sagnotti (1984)

The problem was solve nearly 30 years ago.

Nice consistency check: all log(m) terms must cancel

Extracting UV divergence in the presence of UV subdivergences and IR divergences is a well understood problem.

The N = 4 Supergravity UV Cancellation

Graph	$(\text{divergence})/(\langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^8)$
(a)-(d)	0
(e)	$\left \frac{263}{768} \frac{1}{\epsilon^3} + \frac{205}{27648} \frac{1}{\epsilon^2} + \left(-\frac{5551}{768} \zeta_3 + \frac{326317}{110592} \right) \frac{1}{\epsilon} \right $
(f)	$-\frac{175}{2304} \frac{1}{\epsilon^3} - \frac{1}{4} \frac{1}{\epsilon^2} + \left(\frac{593}{288} \zeta_3 - \frac{217571}{165888}\right) \frac{1}{\epsilon}$
(g)	$-\frac{11}{36}\frac{1}{\epsilon^3} + \frac{2057}{6912}\frac{1}{\epsilon^2} + \left(\frac{10769}{2304}\zeta_3 - \frac{226201}{165888}\right)\frac{1}{\epsilon}$
(h)	$-\frac{3}{32}\frac{1}{\epsilon^3} - \frac{41}{1536}\frac{1}{\epsilon^2} + \left(\frac{3227}{2304}\zeta_3 - \frac{3329}{18432}\right)\frac{1}{\epsilon}$
(i)	$\frac{17}{128} \frac{1}{\epsilon^3} - \frac{29}{1024} \frac{1}{\epsilon^2} + \left(-\frac{2087}{2304} \zeta_3 - \frac{10495}{110592} \right) \frac{1}{\epsilon}$
(j)	$-\frac{15}{32}\frac{1}{\epsilon^3} + \frac{9}{64}\frac{1}{\epsilon^2} + \left(\frac{101}{12}\zeta_3 - \frac{3227}{1152}\right)\frac{1}{\epsilon}$
(k)	$\frac{5}{64} \frac{1}{\epsilon^3} + \frac{89}{1152} \frac{1}{\epsilon^2} + \left(-\frac{377}{144} \zeta_3 + \frac{287}{432} \right) \frac{1}{\epsilon}$
(1)	$\frac{25}{64} \frac{1}{\epsilon^3} - \frac{251}{1152} \frac{1}{\epsilon^2} + \left(-\frac{835}{144} \zeta_3 + \frac{7385}{3456} \right) \frac{1}{\epsilon}$

Spinor helicity used to clean up table, but calculation for all states

All three-loop divergences cancel completely! Cancellations much less trivial than from susy alone.

4-point 3-loop N = 4 sugra UV finite contrary to expectations

Tourkine and Vanhove have understood this result by extrapolating from two-loop heterotic string amplitudes.

Explanations?

Key Question:

Is there an ordinary symmetry explanation for this? Or is something extraordinary happening?

Bossard, Howe and Stelle (2013) showed that 3 loop finiteness can be explained by ordinary superspace +duality symmetries, assuming a 16 supercharge off-shell superspace exists.

$$\int d^4x d^{16}\theta \, \frac{1}{\epsilon} \mathcal{L} \qquad \qquad \begin{array}{l} \text{More } \theta \text{s implies more} \\ \text{derivatives in operators} \end{array}$$

If true, then there is a perfectly good "ordinary" explanation.

Does this superspace exist in D = 5 or D = 4?

Not easy to construct: A harmonic superspace with infinite number of auxiliary fields and also it must be Lorentz non-covariant.

Explanations?

Prediction of superspace: If you add N = 4 vector multiplets, amplitude should develop no new 2, 3 loop divergences.

Bossard, Howe and Stelle (2013)

Highly nontrivial prediction because N = 4 supergravity with matter already diverges at one loop! Fischler (1979)

Prediction motivated us to check cases with vector multiplets.

ZB, Davies, Dennen (2013)

Four vector multiplet amplitude diverges at 2, 3 loops!

Adding vector multiplets causes diverges both at 2, 3 loops.

Desired superspaces hard to construct because they do not exist!

This leaves our supergravity friends puzzled.

What is the new magic?

Some recent papers:

• Non-renormalization understanding from heterotic string.

Tourkine and Vanhove (2012)

• A hidden superconformal symmetry in N = 4 supergravity.

Ferrara, Kallosh, van Proeyen (2012)

• At 1,2 loops in D = 4, 5 a direct link between UV cancellations in nonsupersymmetry YM and finiteness of half-max supergravity

ZB, Davies, Dennen (2013)

Half-maximal supergravity in D=5 at 2 loop is excellent test case because story is very similar to D=4, N=4 sugra at 3 loops: Mysterious finiteness from standard symmetry considerations.

One-Loop Warmup in Half-Maximal Sugra

Generic color decomposition:

ZB, Boucher-Veronneau ,Johansson ZB, Davies, Dennen, Huang

color factor

$$\mathcal{A}_{Q}^{(1)} = ig^{4} \left[c_{1234}^{(1)} A_{Q}^{(1)}(1,2,3,4) + c_{1342}^{(1)} A_{Q}^{(1)}(1,3,4,2) + c_{1423}^{(1)} A_{Q}^{(1)}(1,4,2,3) \right]$$

Q = # supercharges

Q = 0 is pure non-susy YM

 $c_{1234}^{(1)}$ is color factor of this box diagram

$$s = (k_1 + k_2)^2$$
$$t = (k_2 + k_3)^2$$

To get Q +16 supergravity take 2^{nd} copy N = 4 sYM

N = 4 sYM numerators very simple: independent of loop momentum

$$n_{1234} = n_{1342} = n_{1423} = stA_{Q=16}^{\text{tree}}(1, 2, 3, 4)$$
 $c_{1234}^{(1)} \to n_{1234}$

$$\mathcal{M}_{Q+16}^{(1)} = i \left(\frac{\kappa}{2}\right)^4 st A_{Q=16}^{\text{tree}}(1,2,3,4) \left[A_Q^{(1)}(1,2,3,4) + A_Q^{(1)}(1,3,4,2) + A_Q^{(1)}(1,4,2,3) \right]$$

One-loop divergences in pure YM

ZB, Davies, Dennen, Huang

Go to a basis of color factors

Three independent one-loop color tensors

All other color factors expressible in terms of these three:

- one-loop color tensor

$$\mathcal{A}_{Q}^{(1)} = ig^{4} \left[b_{1}^{(1)} \left(A_{Q}^{(1)}(1,2,3,4) + A_{Q}^{(1)}(1,3,4,2) + A_{Q}^{(1)}(1,4,2,3) \right) - \frac{1}{2} C_{A} b_{1}^{(0)} A_{Q}^{(1)}(1,3,4,2) - \frac{1}{2} C_{A} b_{2}^{(0)} A_{Q}^{(1)}(1,4,2,3) \right]$$
tree color tensor
$$C_{A} = 2 N_{c} \text{ for SU}(N_{c})$$

One-loop divergences in pure YM

ZB, Davies, Dennen, Huang

In a basis of color factors:

one-loop color tensor

$$\mathcal{A}_{Q}^{(1)} = ig^{4} \left[b_{1}^{(1)} \left(A_{Q}^{(1)}(1,2,3,4) + A_{Q}^{(1)}(1,3,4,2) + A_{Q}^{(1)}(1,4,2,3) \right) - \frac{1}{2} C_{A} b_{1}^{(0)} A_{Q}^{(1)}(1,3,4,2) - \frac{1}{2} C_{A} b_{2}^{(0)} A_{Q}^{(1)}(1,4,2,3) \right]$$

Q supercharges (mainly interested in Q = 0)

D = 4: F^2 is only allowed counterterm by renormalizability 1-loop color tensor *not* allowed.

D = 6: F^3 counterterm: 1-loop color tensor again *not* allowed.

$$F^{3} = f^{abc} F_{\nu}^{a\mu} F_{\sigma}^{b\nu} F_{\mu}^{c\sigma}$$

$$A_{Q}^{(1)}(1,2,3,4) + A_{Q}^{(2)}(1,3,4,2) + A_{Q}^{(1)}(1,4,2,3) \Big|_{D=4,6 \text{ div.}} = 0$$

$$M_{Q+16}^{(1)}(1,2,3,4) \Big|_{D=4,6 \text{ div.}} = 0$$

tree color tensor

Two Loop Half Maximal Sugra in D = 5

ZB, Davies, Dennen, Huang

$$\mathcal{A}_{Q}^{(2)} = -g^{6} \left[c_{1234}^{P} A_{Q}^{P}(1,2,3,4) + c_{3421}^{P} A_{Q}^{P}(3,4,2,1) + c_{1234}^{NP} A_{Q}^{NP}(1,2,3,4) + c_{3421}^{NP} A_{Q}^{NP}(3,4,2,1) + \text{cyclic} \right]$$

 $D = 5 F^3$ counterterm: 1,2-loop color tensors forbidden! Demand this and plug into double copy:

- Go to color basis.
- Demand no forbidden color tensors in pure YM divegence.
- Replace color factors with kinematic numerators.

gravity
$$\mathcal{M}_{16+Q}^{(2)}(1,2,3,4)\Big|_{D=5\,\text{div.}}=0$$

Half-maximal supergravity four-point divergence vanishes because forbidden color tensor cancels in pure YM theory

Two Loop D = 5 UV Magic

ZB, Davies, Dennen

At least for 2 loops we have identified the source of unexpected UV cancellations in half-maximal supergravity:

It is the same magic found by 't Hooft and Veltman 40 years ago preventing forbidden divergences appearing in ordinary non-susy gauge theory!

Completely explains the D=5 two-loop half maximal sugra case, which still remains mysterious from standard supergravity viewpoint.

Bossard, Howe and Stelle (2013)

Still studying the more complicated higher-loop cases.

Four-loop N = 4 Sugra in Progress

ZB, Davies, Dennen, A. Smirnov, V. Smirnov

- 82 nonvanishing diagram types using N = 4 YM BCJ form. ZB, Carrasco, Dixon, Johansson, Roiban,
- Highly nontrivial ~ 10^9 terms. Complexity comes from N=0 Yang-Mills side of double copy.
- Mostly done, but still dealing with 1 loop subdivergences.

Does pure N = 4 supergravity diverge at four loops or is it finite?

- If it is finite, we should be able to link it to YM cancellations.
- If it is divergent, what is the structure?

Important guidance for N > 4 (especially N = 8) supergravity theories which are more likely to be UV.

Ongoing Work and Next Steps

* Five Loops: Compute the coefficient of the D^8R^4 five-loopcounterterm of N=8 supergravity in D=24/5.

ZB, Carrasco, Johansson, ber Roiban

* Four loops: find the coefficient of the D^2R^4 four loop counterterm in N=4 supergravity in D=4.

ZB, Davies, Dennen, Smirnov²

* Better means for finding BCJ representations of gauge theory.

Bjerrum-Bohr, Dennen, Monteiro and O'Connell (2013)

- * Understanding duality between color and kinematics in string theory.

 Mafra (2009); Bjerrum-Bohr, Damgaard, Sodergaard, Vanhove (2010);

 Mafra, Schlotterer and Steiberger (2011)
- * Finding the connection to Lagrangian description of gravity.

ZB, Dennen, Huang, Kiermaier (2010); Tolotti and Weinzierl (2013)

* Studying the duality in D = 3 for BLG and ABJM theories.

Bargheer, He, and McLoughlin; Huang and Johansson (2012, 2013)

* Finding the underlying symmetry responsible for duality between color and kinematics.

Self dual: O' Connel and Monteiro (2011)

Summary

- A new duality conjectured between color and kinematics.
- When duality between color and kinematics manifest, gravity integrands follow *trivially* from gauge-theory ones.
- Surprisingly good UV behavior of supergravity uncovered.
- N = 4, D = 4 sugra with no vector multiplets has no 3-loop 4-point divergence, contrary to standard symmetry considerations. Duality between color and kinematics needs to be taken into account
- For D = 5, 2 loops we know precisely origin of the "magical UV cancellations": it is standard magic that restricts counterterms of nonsusy YM.

The duality between color and kinematics is revealing a remarkably close connection between perturbative gravity and gauge theories, including their UV properties.

Further Reading

If you wish to read more see following non-technical descriptions:

Hermann Nicolai, PRL Physics Viewpoint, "Vanquishing Infinity"

http://physics.aps.org/articles/v2/70

Z. Bern, L. Dixon, D. Kosower,May 2012 Scientific American,"Loops, Trees and the Search for New Physics"

Anthony Zee, Quantum Field Theory in a Nutshell, 2nd Edition is first textbook to contain modern formulation of scattering and commentary on new developments. 4 new chapters.

